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The Goal

• Going beyond the “cognition as function application view” / 
overcoming the Cartesian inside/outside dichotomy

• From a CL / NLP / AI / ML perspective
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Meet Our Robots

PentoRob 
(Hough & Schlangen, HRI 2017)

Goggles 
(Kousidis & Schlangen, 

AAAI Symp. 2015)

Mr. Robot 
(forthcoming)
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preconditions process consequences

using technical models

(from which it may or may not be possible to derive good 
human/computer interfaces)
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A Research Programme at the Intersection 

of NLP and HRI
Language

preconditions process consequences

using technical models

Wait a minute! Isn’t NLU solved? (LLMs!)

Towards a view of “understanding as coordination”
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The Puzzle
SuperGLUE (Wang et al. 2019)
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What causes a change in motion? The application of a force. Any 
time an object changes motion, a force has been applied. In what 
ways can this happen? Force can cause an object at rest to start 
moving. Forces can cause objects to speed up or slow down. 
Forces can cause a moving object to stop. Forces can also cause 
a change in direction. In short, forces cause changes in motion. 
The moving object may change its speed, its direction, or both. 
We know that changes in motion require a force. We know that 
the size of the force determines the change in motion. How much 
an objects motion changes when a force is applied depends on 
two things. It depends on the strength of the force. It also depends 
on the objects mass. Think about some simple tasks you may 
regularly do. You may pick up a baseball. This requires only a 
very small force.

Would the mass of a baseball affect how much 
force you have to use to pick it up?

Yes ✔

Amazon’s Alexa

Liam Fedus, ST-MoE-32B: 91.2
“A sparsely activated Mixture-of-Expert model with 269B 
parameters, FLOP-matched to a 32B parameter dense 
model. Pre-trained on C4 corpus (Raffel et al., 2019).”

Are the lights upstairs switched off?
You don’t have a group ca!ed “the lights 
upstairs”. There is a group “upstairs 
lights” and a group “kitchen”.
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What causes a change in motion? The application of a force. Any 
time an object changes motion, a force has been applied. In what 
ways can this happen? Force can cause an object at rest to start 
moving. Forces can cause objects to speed up or slow down. 
Forces can cause a moving object to stop. Forces can also cause 
a change in direction. In short, forces cause changes in motion. 
The moving object may change its speed, its direction, or both. 
We know that changes in motion require a force. We know that 
the size of the force determines the change in motion. How much 
an objects motion changes when a force is applied depends on 
two things. It depends on the strength of the force. It also depends 
on the objects mass. Think about some simple tasks you may 
regularly do. You may pick up a baseball. This requires only a 
very small force.

Would the mass of a baseball affect how much 
force you have to use to pick it up?

Yes ✔

Amazon’s Alexa

Liam Fedus, ST-MoE-32B: 91.2
“A sparsely activated Mixture-of-Expert model with 269B 
parameters, FLOP-matched to a 32B parameter dense 
model. Pre-trained on C4 corpus (Raffel et al., 2019).”

https://arstechnica.com/gadgets/2021/12/alexa-
tells-10-year-old-to-try-a-shocking-tiktok-challenge/

The challenge is simple: plug in a phone charger about halfway into a 
wall outlet, then touch a penny to the exposed prongs. The resulting 
sparks are supposed to be cool enough to win you instant internet 
fame. (Obviously, do NOT attempt this!)
https://ourcommunitynow.com/news-national/watch-out-parentsthe-viral-
outlet-challenge-has-kids-doing-the-unthinkable

https://arstechnica.com/gadgets/2021/12/alexa-tells-10-year-old-to-try-a-shocking-tiktok-challenge/
https://arstechnica.com/gadgets/2021/12/alexa-tells-10-year-old-to-try-a-shocking-tiktok-challenge/
https://ourcommunitynow.com/news-national/watch-out-parentsthe-viral-outlet-challenge-has-kids-doing-the-unthinkable
https://ourcommunitynow.com/news-national/watch-out-parentsthe-viral-outlet-challenge-has-kids-doing-the-unthinkable
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What causes a change in motion? The application of a force. Any 
time an object changes motion, a force has been applied. In what 
ways can this happen? Force can cause an object at rest to start 
moving. Forces can cause objects to speed up or slow down. 
Forces can cause a moving object to stop. Forces can also cause 
a change in direction. In short, forces cause changes in motion. 
The moving object may change its speed, its direction, or both. 
We know that changes in motion require a force. We know that 
the size of the force determines the change in motion. How much 
an objects motion changes when a force is applied depends on 
two things. It depends on the strength of the force. It also depends 
on the objects mass. Think about some simple tasks you may 
regularly do. You may pick up a baseball. This requires only a 
very small force.

Would the mass of a baseball affect how much 
force you have to use to pick it up?

Yes ✔

LLM-based Recipe Bot

Liam Fedus, ST-MoE-32B: 91.2
“A sparsely activated Mixture-of-Expert model with 269B 
parameters, FLOP-matched to a 32B parameter dense 
model. Pre-trained on C4 corpus (Raffel et al., 2019).”

https://twitter.com/PronouncedHare/status/
1687364403379789824

https://twitter.com/PronouncedHare/status/1687364403379789824
https://twitter.com/PronouncedHare/status/1687364403379789824
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What causes a change in motion? The application of a force. Any 
time an object changes motion, a force has been applied. In what 
ways can this happen? Force can cause an object at rest to start 
moving. Forces can cause objects to speed up or slow down. 
Forces can cause a moving object to stop. Forces can also cause 
a change in direction. In short, forces cause changes in motion. 
The moving object may change its speed, its direction, or both. 
We know that changes in motion require a force. We know that 
the size of the force determines the change in motion. How much 
an objects motion changes when a force is applied depends on 
two things. It depends on the strength of the force. It also depends 
on the objects mass. Think about some simple tasks you may 
regularly do. You may pick up a baseball. This requires only a 
very small force.

Would the mass of a baseball affect how much 
force you have to use to pick it up?

AYes✔

non-existing

Liam Fedus, ST-MoE-32B: 91.2
“A sparsely activated Mixture-of-Expert model with 269B 
parameters, FLOP-matched to a 32B parameter dense 
model. Pre-trained on C4 corpus (Raffel et al., 2019).”

A person who’s good at SuperGLUE would be said to understand the language well.
And we’d expect them to be able to do the right-hand side things easily.
What’s missing?

Can you lend me a hand? Can you 
hold this up while I fix the screw?
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The Story Ahead

• NLP has a powerful hammer: function approximation.

• Situated Natural Language Understanding (SLU) is not a 
nail. (Bringing in robots forces this issue.)

• To evaluate and improve the hammer, NLP bangs on 
everything that sticks out and looks interesting, in no 
particular order.

• Let’s see if we can do better for SLU.

11
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The Story Ahead

• But we can learn something from NLP in terms of 
methodology: 

• focus on learning (environments; pre-training) 

• focus on generalizability, re-usability  

• think about the “adjacent possible”, avoid hacking 
something together

• double role of “benchmarks” as test and goal

•  but let’s do so carefully and systematically! 

12



colab
potsdam Department Linguistics Universität Potsdam David Schlangen

The Story Ahead

• The Strategy:

• Let us think harder about what the range of observable 
behaviours is that manifest “language understanding”

• Let us think harder about what the unobservable 
construct “language understanding” is behind the 
observable behaviour

• Let us derive from that strategies for testing for presence 
of language understanding (and targets for modelling)

13
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(Schlangen 2019a, 2019b, 2021 ACL, 2022, 2023a, 2023b)

The Full Story

14

20
19

20
19

A
C

L,
 20

21
C

La
SP

  W
S,

 2
02

2
20

23
20

23



colab
potsdam Department Linguistics Universität Potsdam David Schlangen

(Schlangen 2019a, 2019b, 2021 ACL, 2022, 2023a, 2023b)

The Full Story

15
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Structure
• Introduction

• A Puzzle

• Preview of the Story

• The Space of Language Use

• From Function to Dynamic Process

• Methodology for Investigation

• Compare & Contrast

• From Datasets to Dialogue Games

• Architectures, Infrastructures

• Zoom in on incremental processing // the retico package

• Conclusions

16
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The Space of Language Uses

17

institutional writing

SuperGLUE

• the type of language use represented by NLP-NLU is not the 
only one, and not even the paradigmatic one
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The Space of Language Uses
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The Space of Language Uses

19

institutional writing

SuperGLUE

• the type of language use represented by NLP-NLU is not the 
only one, and not even the paradigmatic one

• it is, however, the most nail-like: everything other  
than the mapping from input to  
output is abstracted away.

• just like school exams

• but what does it mean to only be able to do that?
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The Space of Language Uses
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high low

low

familiarity / audience design / shared context

ChatGPT
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 / 
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institutional writing

familial face-to-face 
int.

institutional face-to-
face int

personal letter 
writing SuperGLUE

• the type of language use represented by NLP-NLU is not the 
only one, and not even the paradigmatic one

https://arxiv.org/abs/2305.13455
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The Story Ahead

• The Strategy:

• Let us think harder about what the range of observable 
behaviours is that manifest “language understanding”

• Let us think harder about what the unobservable 
construct “language understanding” is behind the 
observable behaviour

• Let us derive from that strategies for testing for presence 
of language understanding (and targets for modelling)

21
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Understanding as Function
How can one argue for internal 
structure of function / task?

• Dissociations: Find examples 
where one is present, but not the 
other. (Evidence can be 
phylogenetical, ontogenetical, 
pathological.)

• Explanatory power: Story with 
components more coherent than 
without..

22
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Understanding as Function

23
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Understanding as Function
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language 
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world 
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acts

“Consensus model”

(Chomsky 1957)

(Murphy 2002; Margolis & Laurence 2015)

(Kamp 1981, Heim 1983, Asher & Lascarides 2001)

(Johnson-Laird 1983, van Dijk & Kintsch 1983)

 
(Bratman 1987, Cohen et al. 1990, Clark 1996)

ALARM! Is this not 
just 20th century AI??

Observations certainly 
not new.  (This 
combination may be?)

The claim is not that 
these should be 
modelled symbolically 
(representations + 
rules)!
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The trophy didn’t fit into the suitcase because it was too small

The trophy didn’t fit into the suitcase because it was too big

(Levesque et al. 2012)

(Ribeiro et al. 2020)
(Wang et al. 2019)

work on representation probing
(Dunietz et al. 2020)

Understanding as Function
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A SciFi Story

26
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colab
potsdam Department Linguistics Universität Potsdam David Schlangen

Together with your friendly helper robot, you are assembling flat 
packed furniture.

“Can you fetch the box cutter from the drawer in the other 
room?”, you say.

“Which one, it’s not in the one with the other tools”, comes the 
voice from the other room.

Later, the two of you look at step 24 of the instructions. You look 
at a connector, and wonder whether it’s of type 23567, which is 
what you need now. “No, that’s not it”, robot says.

“The torx?”, you say and point to a tool. “Sure, here you go. So 
that’s a torx?”

27

A SciFi Story
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What does RØBØT know?
Together with your friendly helper robot, you are assembling flat 
packed furniture.

“Can you fetch the box cutter from the drawer in the other 
room?”, you say.

“Which one, it’s not in the one with the other tools”, comes the 
voice from the other room.

Later, the two of you look at step 24 of the instructions. You look 
at a connector, and wonder whether it’s of type 23567, which is 
what you need now. “No, that’s not it”, robot says.

“The torx?”, you say and point to a tool. “Sure, here you go. So 
that’s a torx?”

28
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What does RØBØT know?
Together with your friendly helper robot, you are assembling flat 
packed furniture.

“Can you fetch the box cutter from the drawer in the other 
room?”, you say.

“Which one, it’s not in the one with the other tools”, comes the 
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So what’s the problem with 
the understanding function?

Together with your friendly helper robot, you are assembling flat 
packed furniture.

“Can you fetch the box cutter from the drawer in the other 
room?”, you say.

“Which one, it’s not in the one with the other tools”, comes the 
voice from the other room.

Later, the two of you look at step 24 of the instructions. You look 
at a connector, and wonder whether it’s of type 23567, which is 
what you need now. “No, that’s not it”, robot says.

“The torx?”, you say and point to a tool. “Sure, here you go. So 
that’s a torx?”

34
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Situated Interaction

(Zarrieß et al., LREC 2016)
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PentoRef (Meta-)Corpus
(Zarrieß et al. 2016)

http://clp.ling.uni-potsdam.de

http://clp.ling.uni-potsdam.de
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What’s actually happening

37

(Kontogiorgos et al. 2018)
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What’s actually happening
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What’s actually happening

39

INS: So the first one you should take (0.5)  
FOL:                                   mh[m 
INS: is] the frame 
FOL:         [*hands move and stop*] 
INS: But the [one with the stripes ](0.5) 
FOL:                               Ohk[ay 
INS: the] [black one (.) with the stripes 
FOL:      [*hands move to wrong, then corr. one* 
INS: (1.0) perfect
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The Understanding Process

40

A: self-correction take thee the take the green one
A:
B: back channels uhu mhm

A:
A: gestures put this one over there

A:
A: non-ling. action if you li" this a bit you can…

A:
B: facial displays I wi! get a root canal tomorrow a"ernoon

"

A:
B: interruptions He went to Mary and then he

what what what stop he
A:
B: overlap Did you see the movie yesterday?

It was FANTAS
A:
B: pause Do you wanna come? OK
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A:
B: clarification did you?

what?
ask Mary

A:
B: 2nd position repair ..on Monday

Tuesday
right

A:
B: 3rd position repair He’s not. mhm or, I meant, she’s not

A:
B: established reference the pointy one

uhh ah ok
right

A:
B: conceptual pacts [much later] pointy

yup

A:
B:

social learning / 
discussion / justification

The Understanding Process
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Knowledge & Anchoring 
Processes

42
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a/o

a aa

incremental processing

incremental learning

multimodal grounding

conversational grounding

(Schlangen 2023b)
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Knowledge Application 
Function

43
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multimodal grounding

44

language 
model

world 
model

a

o

agent model

situation 
model

discourse 
model

self partner

syntax
form / meaning

lexicon / concepts
folk theories

scripts
facts

episodes
discourse referents

coherence relations

objects
agents

relations
processes

acts

a aa

incremental processing
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(Schlangen 2023b)

Knowledge & Anchoring 
Processes
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multimodal grounding
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(Schlangen 2023b)

Knowledge & Anchoring 
Processes

Anchoring Processes

Incremental Processing Conversational Grounding

Incremental Learning Multimodal Grounding

now

here

us

(a! of) us
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Language Model

World Model

Situation Model

Discourse Model

Agent Model

Knowledge & Process
Incremental Processing Conversational Grounding

Incremental Learning Multimodal Grounding

(Holler & Levinson 2019)

(H. Clark 1996)

(Harnad 1990)

(Harris 2015) 
(E. Clark 2003)

(Levinson 2010)

(McNeill 1992; Kendon 2004)

(Fernández et al. 2011)

(Bowles & 
Gintis 2011)

(Hoppitt & Laland 2013)

Schlangen (2023a)

(Christianson & Chater 2016)
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The Story Ahead

• The Strategy:

• Let us think harder about what the range of observable 
behaviours is that manifest “language understanding”

• Let us think harder about what the unobservable 
construct “language understanding” is behind the 
observable behaviour

• Let us derive from that strategies for testing for presence 
of language understanding (and targets for modelling)

47

✔

✔

How can we learn coordination?
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The Story Ahead
• But we can learn something from NLP in terms of 

methodology: 
• focus on learning (environments; pre-training) 
• focus on generalizability, re-usability  
• think about the “adjacent possible”, avoid hacking 

something together
• double role of “benchmarks” as test and goal

•  but let’s do so carefully and systematically! 

48
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NLU
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supervised learning 
testing

supervised learning 
testing

dataset B // phenomenon B

supervised learning 
testing

dataset C // phenomenon A

supervised learning 
testing

dataset D // phenomenon C
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pretraining 
on text

(supervised fine-tuning) 
testing

(supervised fine-tuning) 
testing

dataset B // phenomenon B

(supervised fine-tuning) 
testing

dataset C // phenomenon A

(supervised fine-tuning) 
testing

dataset D // phenomenon C
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SLU
pretraining 

on text

supervised learning 
testing

supervised learning 
testing

dataset B // phenomenon B

dataset A // phenomenon A

the pragmatic (modular) approach

manually assembled system 
user evaluation

situation A

manually assembled system 
user evaluation

situation B

pretraining 
on video?

dataset A // phenomenon A
(supervised fine-tuning) 
testing

(supervised fine-tuning) 
testing

dataset B // phenomenon B

(supervised fine-tuning) 
testing

dataset C // phenomenon A

(supervised fine-tuning) 
testing

dataset D // phenomenon C
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multimodal grounding
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language 
model

world 
model

a

o

agent model

situation 
model

discourse 
model

self partner

incremental processing

incremental learning

a/o
conversational grounding

incremental processing 

(Schlangen & Skantze 2009; Skantze & Schlangen 2009) + ~30+ other 
papers + (Madureira & Schlangen 2020, Kahardipraja et al. 2021, 2023)

Knowledge & Anchoring 
Processes

turn taking 

(Schlangen 2006, “From Reaction to Prediction”), 
(Atterer et al. 2008), … , (Andrist et al. 2016), (Kousidis 
& Schlangen 2015), (Maier et al. 2017), (Hough & 
Schlangen 2017)

conversational grounding / repair 

(Schlangen 2004, Rodríguez & Schlangen 2004), …, 
(Ginzburg et al. 2014), (Hough & Schlangen 2015), …, (Hough 
& Schlangen 2017), …, (Madureira & Schlangen 2023a, b)

multimodal grounding 

(Siebert & Schlangen 2008), …, (Kennington & 
Schlangen 2015, Schlangen et al. 2016), 
(Kennington et al. 2013, Han et al. 2014, 2017, 2018)
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SLU
pretraining 

on text

supervised learning 
testing

supervised learning 
testing

dataset B // phenomenon B

dataset A // phenomenon A

the pragmatic (modular) approach

manually assembled system 
user evaluation

situation A

manually assembled system 
user evaluation

situation B

pretraining 
on video?

dataset A // phenomenon A
(supervised fine-tuning) 
testing

(supervised fine-tuning) 
testing

dataset B // phenomenon B

(supervised fine-tuning) 
testing

dataset C // phenomenon A

(supervised fine-tuning) 
testing

dataset D // phenomenon C
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SLU
pretraining 

on text

the end-to-end (crazy) approach

reinforcement learning 
user evaluation

situation A / environment

reinforcement learning 
user evaluation

situation B

pretraining 
on video?

dataset A // phenomenon A
(supervised fine-tuning) 
testing

(supervised fine-tuning) 
testing

dataset B // phenomenon B

(supervised fine-tuning) 
testing

dataset C // phenomenon A

(supervised fine-tuning) 
testing

dataset D // phenomenon C

Problem: Very sample inefficient, 
needs to learn inside of simulator.
- sim2real
- real2sim



colab
potsdam Department Linguistics Universität Potsdam David Schlangen

SLU Methodology
• “Intentionally constructed Dialogue Games, carefully extended”

• A Dialogue Game is a constructed activity with a clear beginning and 
end, in which players attempt to reach a predetermined goal state 
primarily by means of producing and understanding linguistic material.                         

• “Ich werde auch das Ganze: der Sprache und der Tätigkeiten, mit denen sie 
verwoben ist, das »Sprachspiel« nennen.” //  
“I shall also call the whole, consisting of language and the activities into which it is 
woven, a «language-game».”   (Wittgenstein 1953; PU §7) 
(Also: Sellars 1956, Levinson 1979)

• Examples: Language & Vision navigation in 3D environment 
(Anderson et al. 2018); MeetUp game (Schlangen et al. 2018); ALFRED, 
embodied instruction following (Shridhar et al. 2020)
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SLU Methodology
• “Intentionally constructed Dialogue Games, carefully extended”

• A Dialogue Game is a constructed activity with a clear beginning and  
end, in which players attempt to reach a predetermined goal state 
primarily by means of producing and understanding linguistic material.                         

• process, instead of product

• activity type, instead of dataset

• evaluated through experience (phenomenological), not (just) objectively 
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The thing that you give to other researchers is the technical setup for playing that 
game, not (just) protocols of others having played it.
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SLU Methodology
• “Intentionally constructed Dialogue Games, carefully extended”

• Connect features of the game to aspects of the SLU process (knowledge 
domains & anchoring processes)

• Often used: classification of games via main goal, e.g. reference (Krauss & 
Weinheimer 1964), information giving, instruction fo!owing (construction, 
navigation), negotation

• Useful, but doesn’t say enough about the situation. (Which matters for 
situated interaction…)

• Our proposal: A fine-grained taxonomy of dialogue games, with clear 
connections to KD&P model.
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- present y/n
- familiar y/n
- real / simulated
- high/low fidelity
- static / dynamic
- manipulable y/n

59

Dialogue Game Taxonomy

- mutual observability y/n
- view shared/part/diff.
- spoken / typed
- turn taking free / constr.
- repeated y/n

- role equality / division
- (verbal) action space: free/constrained;
- scoring
- goal type: ref., inf., instr. (nav., constr.), neg.
- activity-level: reactive/proactive
- co-level: control/cooperation/collaboration

Environment 
(relevant objects & 
activities, and how 
they are presented)

Setting 
(how players are 

connected & 
represented)

Game 
(in narrow sense; 

rules; player roles & 
goals)

• Our proposal: A fine-grained taxonomy of dialogue games, with clear 
connections to KD&P model.



colab
potsdam Department Linguistics Universität Potsdam David Schlangen

- present y/n
- familiar y/n
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Language Model

World Model

Situation Model

Discourse Model

Agent Model

Incremental 
Processing

Conversational 
Grounding

Incremental 
Learning

Multimodal 
Grounding

Game & KDP

- mutual observability y/n
- view shared/part/diff.
- spoken / typed
- turn taking free / constr.
- repeated y/n

- role equality / division
- (verbal) action space: free/constrained;
- scoring
- goal type: ref., inf., instr. (nav., constr.), neg.
- activity-level: reactive/proactive
- co-level: control/cooperation/collaboration

• Our proposal: A fine-grained taxonomy of dialogue games, with clear 
connections to KD&P model.
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Environment

• present y ~ n

• familiar y ~ n

• real > simulated

• high fidelity ~ low

• dynamic > static 

61

⟘ ⟙
unrestricted, self-
organised face-to-
face interaction

VQA, 
vis dial

Setting

• spoken > typed

• embodiment y > n

• repeated y > n

• view shared ~ part 
~ diff

Game

• role equality > div.

• action space unrestr. > 
restr.

• symmetry > asymmetry

• negot. ~ instr. foll. > inf. 
> ref.

• collab. > coop. > control
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SLU
pretraining 

on text

the end-to-end (crazy) approach

reinforcement learning 
user evaluation

dialogue game A

reinforcement learning 
user evaluation

dialogue game B

pretraining 
on video?

dataset A // phenomenon A
(supervised fine-tuning) 
testing

(supervised fine-tuning) 
testing

dataset B // phenomenon B

(supervised fine-tuning) 
testing

dataset C // phenomenon A

(supervised fine-tuning) 
testing

dataset D // phenomenon C

Problem: Very sample inefficient, 
needs to learn inside of simulator.
- sim2real
- real2sim
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SLU
pretraining 

on text

the end-to-end (crazy) approach

reinforcement learning 
user evaluation

dialogue game A

reinforcement learning 
user evaluation

dialogue game B

pretraining 
on video?

dataset A // phenomenon A
(supervised fine-tuning) 
testing

(supervised fine-tuning) 
testing

dataset B // phenomenon B

(supervised fine-tuning) 
testing

dataset C // phenomenon A

(supervised fine-tuning) 
testing

dataset D // phenomenon C

Problem: Very sample inefficient, 
needs to learn inside of simulator.
- sim2real
- real2sim
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Philipp Sadler Sherzod Hakimov
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SLU
pretraining 

on text

the end-to-end (crazy) approach

reinforcement learning 
user evaluation

dialogue game A

reinforcement learning 
user evaluation

dialogue game B

pretraining 
on video?

dataset A // phenomenon A
(supervised fine-tuning) 
testing

(supervised fine-tuning) 
testing

dataset B // phenomenon B

(supervised fine-tuning) 
testing

dataset C // phenomenon A

(supervised fine-tuning) 
testing

dataset D // phenomenon C

Problem: Very sample inefficient, 
needs to learn inside of simulator.
- sim2real
- real2sim
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Structure
• Introduction

• A Puzzle

• Preview of the Story

• The Space of Language Use

• From Function to Dynamic Process

• Methodology for Investigation

• Compare & Contrast

• From Datasets to Dialogue Games

• Architectures, Infrastructures

• Zoom in on incremental processing // the retico package

• Conclusions
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• Preview of the Story
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• From Datasets to Dialogue Games

• Architectures, Infrastructures

• Zoom in on incremental processing // the retico package
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multimodal grounding

67

language 
model

world 
model

a

o

agent model

situation 
model

discourse 
model

self partner

syntax
form / meaning

lexicon / concepts
folk theories

scripts
facts

episodes
discourse referents

coherence relations

objects
agents

relations
processes

acts

incremental processing

incremental learning

a/o
conversational grounding

(Schlangen 2023b)

Knowledge & Anchoring 
Processes



the IU model 
– Assumptions –

• Information state is updated with minimal units of 
information, as soon as they can be hypothesised
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information, as soon as they can be hypothesised 

• “Higher-level” hypotheses can be formed on the 
basis of “lower-level” ones.  

• IS may have to be revised, in light of newer 
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the IU model 

right
ASR take the red

Sem LFa b c

• (Schlangen & Skantze 2009, 2011) 

• Implemented in InproTK (Timo Baumann, Casey Kennington, 
Spyros Kousidis, Bielefeld), Jindigo (Skantze, Stockholm), 
IPAACA (Buschmeier & Kopp, Bielefeld) 

• new: RETICO (T. Michael, Berlin; Kennington, Boise)

Timo Baumann
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https://github.com/retico-team

Thilo Michael

Casey Kennington
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Conclusions
• “language understanding” is more than an input/output mapping

• it is useful to think of the unobservable construct “language 
understanding” as constituting in the application (and enrichment) of 
various models through various processes…

• yielding an overall dynamic process of understanding / coordination

• the components of this process can be differently challenged through 
purposefully constructed dialogue games

• as targets, or as test cases (future proofing against pre-trained models)

• models can be built in a modular fashion, or in a more end-to-end fashion

• the future is going to be wild
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Conclusions

• a “reformist” approach to making “cognition as computation” 
more E? (embedded, embodied…)
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Conclusions / Last Word

• An argument from ethics for focussing on task-oriented 
situated interaction for practical work:

• An assertion is a promise. (To take responsibility for the 
truth of the proposition.)

• In situated tasks, these promises are discharged quickly, 
and controllably. (Cp. ChatGPT making statements about 
a person.)

• Fewer lies necessary (no “my favourite colour is blue” from 
the robot).

85



An embodied joint 
construction game…



Thank you.
Questions, Comments?

Acknowledgements: Many thanks to my current & former grad 
students ( https://clp.ling.uni-potsdam.de/people/ ) & colleagues w/ 
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Why Dialogue Games?

A Dialogue Game is a constructed activity with a 
clear beginning and end, in which players attempt 
to reach a predefined goal state primarily by means 
of producing and understanding linguistic material. 
(Schlangen 2019a, 2023)
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goal-directed activity (provides 
purpose to language)

multi-turn (provides 
context to language)

clear definition of what 
counts as legal move  
(formal constraints)

clear metric for whether / 
how well goal has been 
reached

goal & rules provide  
control over type of context that is relevant 
control over type of knowledge that is relevant

nice technical property: game instances unlikely to be even in internet-scale 
training data; easy to generate more


