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Abstract

The potential of using ASR n-best lists for dialogue systems has

often been recognised (if less often realised): it is often the case

that even when the top-ranked hypothesis is erroneous, a bet-

ter one can be found at a lower rank. In this paper, we describe

metrics for evaluating whether the same potential carries over to

incremental dialogue systems, where ASR output is consumed

and reacted upon while speech is still ongoing. We show that

even small N can provide an advantage for semantic process-

ing, at a cost of a computational overhead.

Index Terms: dialogue systems, speech recognition, natural

language understanding, incrementality

1. Introduction

By design, modern speech recognisers pursue all hypotheses

about the input signal in one pass which are internally ranked

for their quality [1]. Not always does this ranking reflect the

right quality criteria, however, and in practice it does happen

that more appropriate hypotheses are lower ranked (see e. g.

[2]). It has often been tried to make use of these n-best lists

in Spoken Dialogue Systems, under the assumption that contex-

tual information can help to identify more appropriate candidate

utterances (see Section 2 below).

In this paper we evaluate whether n-best lists could also be

of use in incremental dialogue systems that process input while

the speaker is still producing her utterance and that hence work

with partial information from the ASR. We develop metrics for

measuring this utility, looking both at the objective quality of

the hypothesis as well as its utility for further semantic process-

ing. More precisely, we measure whether temporal benefits (can

hypotheses be established sooner?) and accuracy benefits (can

correct hypotheses be established more often?) can be realised

through the use of n-best lists, and how a decision for or against

use of n-best lists can be made based on computational and ac-

curacy trade-offs.1

The metrics developed here only explain how to measure

whether using n-best lists in an incremental setting—given a

particular ASR system—could in principle be advantageous.

We leave the next steps, showing how to make use of such lists

in practice and investigating to what extend techniques from the

non-incremental case can be transferred, to future work.

In the remainder of the paper we cover related work in Sec-

tion 2, describe measures for incremental n-best processing in

Section 3, describe our setup in Section 4, and present our re-

sults in Section 5. We close with a general discussion and con-

clusions in Sections 6 and 7.

1The work reported here is an extension of [3], which deals with
incremental one-best hypotheses only. See below for the substantive
adaptation that were needed to cover n-best and semantic utility as well.

2. Related work

For the non-incremental case it has often been shown that there

can be useful information at lower ranked positions in the n-

best list produced by a speech recogniser for a given utterance.

An often-tried method to get at this useful information is to use

“higher-level” features of various sorts to re-rank the hypothe-

ses, e. g. [2] use intra-utterance linguistic features to re-order

the list; [4] use a limited form of dialogue context to judge the

contextual plausibility of hypotheses; [5] additionally use prag-

matic plausibility information to re-order and classify as “ac-

cept” / “reject” hypotheses in the list; [6] finally add informa-

tion from different analysis-levels and target domains to the re-

ordering process. More recently, statistical methods have been

developed that can treat the whole n-best list as a belief distri-

bution over observations, foregoing explicit re-ordering [7, 8].

To our knowledge, there is very little work on n-best lists

in incremental speech recognition. [9] present an extension to a

method for incremental NLU [10] to use n-best lists and show

some improvement (8.49%); it is difficult though for us to eval-

uate these claims as the paper is only available in Japanese.2

In earlier work, we presented measures for capturing incre-

mental performance of ASR systems, but only for the one-best

case [3]. We focused on aspects such as the correctness of par-

tial hypotheses, how quickly words are recognized, and how

many intermittent word-hypotheses have to be withdrawn, and

demonstrated a trade-off between the measures as well as that

simple post-processing improves many of their measures. We

extend this here to n-best hypothesis lists, and also generalise

the evaluation metrics by using a hand-transcribed gold stan-

dard (instead of the final 1-best result); this allows us to evalu-

ate the influence of using n-bests lists on the performance of the

NLU module as well.

3. Measures for
incremental n-best hypotheses

3.1. ASR measures

Following [3], we denote with wgold t
the words in the gold tran-

scription up to time t and similarly with whypN
t

the words in a

hypothesis at time t, here additionally indexed with the rank in

the n-best list (N ). Instead of only evaluating whether a hy-

pothesis at time t is “relatively correct” (i. e., it accords to the

final best ASR hypothesis up to time t when processing has

completed, as in [3]), we calculate the incremental word er-

ror rate at time t as the ordinary word error rate of the N ’th-

ranked hypothesis at time t and the gold standard up to this

point: WER
N
t = WER(whypN

t

, wgold t
).

We define the (anti)-oracle WER as that of the best (worst)

hypothesis among those in the n-best list:

2Our summary is based on the English abstract of the Japanese paper.
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Figure 1: Setting of the Wizard-of-Oz experiment used for ob-

taining our data with the user interface to the left and the wizard

interface to the right.

oWERt = min(WER
1..N
t ), (aWERt = max(WER

1..N
t ));

this gives an indication of the possible gain if we identify the

best hypothesis, or loss should we strike on the worst. We are

also interested in their respective positions in the n-best lists:

oPOS t = arg minn∈1..N WER
n
t , (arg max for aPOS t).

3.2. NLU measures

Similar to WER for ASR output, we use CER (concept error

rate) as our base measure for incremental NLU metrics. In prin-

ciple, the gold standard for evaluating NLU hypotheses changes

(or rather, expands) over time just as that for ASR: the more of

the utterance has been processed, the more is knowable about

its meaning. In our experiments explained below, however, the

NLU task is simplified to filling just one slot, and we assume

that filling the slot should occur as early as possible; because of

this, we do not need temporal alignment of semantic informa-

tion.

Unlike in the non-incremental case, the semantic slot can be

unfilled at times during the processing of the utterance. We only

consider this to be an error toward the end of an utterance, when

some meaning should have been extracted; to express this idea,

we define an incremental uncertainty-adjusted concept error at

time t for each slot. It is 0 if the slot is correctly filled, 1 if the

slot is incorrectly filled, and α t

tmax
if the slot is unfilled (while

it is filled in the gold standard, tmax is the utterance duration).

α (with 0 ≤ α ≤ 1) denotes how much better no answer is than

a wrong answer. We can derive oracle results and positions in

the n-best list for the uncertainty-adjusted CER in the same way

as we did with WER above.

We adapt the Edit Overhead (EO) from [3] to count the

number of edits between all adjacent n-best lists (only counting

additions and deletions between the lists, not changes in posi-

tion) over the course of the utterance compared to the number

of edits that would have been necessary (1 in our case as there

is one concept to be filled per utterance). Also, we define con-

cept first correct (CFC) to be the percentage into the utterance

at which the referent was first (oracularly) correctly resolved.

4. Setup and corpora

We use the Sphinx-4 speech recognition framework [11] for our

experiments, using the built-in LexTree decoder which we ex-

tended to provide incremental n-best hypotheses. The N best

results are constructed at each time step (10ms) from the list of

best ranking tokens provided by the token-pass algorithm. We

built German acoustic models based on a small corpus of spon-
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Figure 2: Distribution of n-best list sizes for ASR and NLU

taneous instructions in a puzzle building domain,3 and the Kiel

corpus [12]; our statistical language model was trained on the

puzzle domain data.

We collected evaluation data in a Wizard-of-Oz setting with

11 participants producing in total 255 utterances, 2364 words

and approximately 18 1/2 minutes of speech. The subjects were

shown 12 pentomino pieces4 on the screen (see Figure 1), one

of which was marked as the one to describe. The subjects were

prompted by synthesized speech to instruct the (wizard-driven)

system which one to pick. The utterances were transcribed man-

ually and word timings were produced using forced alignment

with the MAUS tool [13]. The semantic annotation (the in-

tended referent) was derived automatically from the instruction

to the user and the wizard’s selection.

Due to computational limitations we had to restrict

Sphinx’s active list to 100,000 entries (including acoustic vari-

ations) and a large (but not infinite) relative beam width. We

analyzed ASR n-best list sizes by utterance time and found the

averaged sizes to be remarkably stable over time. Exceptions

to this were utterance-final and initial silences where there were

fewer hypotheses on average. This most likely stems from the

fact that understanding silence is much easier than understand-

ing speech and varying leading and trailing silence would vary

results (regardless of the actual recognition process). We thus

decided to ignore ASR results during leading and trailing si-

lences (according to the gold alignment) for further analyses.

Notice also that WERwould not be defined before the first word

in the gold alignment starts, because of the normalization by the

number of words in gold.

Figure 2 shows the size distribution of incremental n-best

lists limited to words for cropped and complete utterances. It

shows that very large n-best lists are rare: while there is one

n-best list in our corpus with 1381 different hypotheses, more

than 95% of the n-best lists have less than 433 entries, and the

median length of n-best lists is 85. In comparison, utterance

final n-best lists are much shorter on average: The maximum

length is 293; over 95% are shorter than 210 entries; the me-

dian length is below 37. In other words, incrementally analyz-

ing all available n-best hypotheses not only incurs additional

computational cost because at each frame in time N hypotheses

have to be considered, but also because the in-utterance N are

much higher than utterance-final N . In order to limit the com-

putational cost, we limit N to 200 for our analyses (completely

covering more than 77% of the n-best lists, while truncating the

rest). One goal of our experiments described below is to find an

even lower plausible threshold for N .

Non-incremental WER for our ASR is 62% (oracle: 57%

3Available from http://www.voxforge.org/home/

downloads/speech/
4All geometrical shapes that can be formed by attaching 5 squares

by their edges (irrespective of symmetry or orientation).
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Figure 3: Positions of (anti)-oracle WER with different Nmax

and means of oPOS, aPOS and their difference over time.

anti-oracle: 76%).5

Our domain is limited to finding one among twelve puz-

zle pieces, so we are only dealing with reference resolution al-

though our incremental semantic component (described in de-

tail in [14]) from which CER are computed, is capable of more

complex semantic extraction. The grammar which is used with

the component was developed using approximately 150 sen-

tences from a larger domain, where pieces could not only be se-

lected but also flipped, turned and moved to a number of places;

the current domain is a sub-domain, where we only select pieces

and are so far only interested in one of the slots of the frame se-

mantics, the object:name-slot.

Figure 2 also shows the distribution of n-best list sizes for

the NLU component given the ASR’s input. It never finds more

than 9 different meanings among the ASR hypotheses and most

frequently does not find a meaning at all (which may be the

right thing to do, as the content words for the referent may not

yet have been said). In fact, empty hypotheses more often occur

in the beginning of the utterance and are less common towards

the end (cf. Section 5).

5. Experiments and results

In this section we first analyze incremental ASR measures

against limited n-best lists of size Nmax. Then we analyze in-

cremental NLU measures depending on variants of ASR output

and try to draw conclusions on this.

Figure 3 (a) shows the mean positions of the (anti)-oracle

WERs in the n-best lists for varying Nmax. Both the best and

the worst WERs occur on average quite early into the n-best

lists, and are rare to be at the end the lists, as can be seen from

the position of the 95% quantiles. Thus, from the point of view

of ASR, using a large n-best list does not seem to buy one much.

Figure 3 (b) plots the mean positions of (anti-)oracleWERs over

time (i. e., percentage of the utterance). oPOS and aPOS are at

roughly the same position (on average) towards the beginning

of the utterance and oPOS seems to decrease while aPOS in-

creases as illustrated by the linear regression of their respective

values. This tendency can be seen more clearly in Figure 3 (c)

which plots the difference in position between anti-oracle and

oracle WER over time / percentage of utterance. We can con-

clude from this that using higher N in the beginning of utter-

ances promises a higher profit but is connected with a higher

risk, while we could reduce N towards the end of the utterance

and at the same time be more certain to still keep available the

objectively best hypothesis, while reducing the danger of choos-

ing a bad hypothesis.

Figure 4 (a) shows that n-best ASR produces a considerably

5Note that our corpus contains spontaneous speech of unknown
speakers that contains many disfluencies; we also used relatively lit-
tle training data in building our acoustic models and did not tweak the
ASR parameters for maximum performance.
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Figure 4: NLU performance: oracle CER over time in different

settings (a and b), and result distributions in the output (c).

lower concept error rate than the mean best concept error with

decreasing N . This is even for small N and particularly so at

the beginning of utterances . We can conclude that in our setting

using n-best ASR is promising (in terms of CER) especially

from the perspective of incremental processing considerations

and for filtering early false positives. Towards the utterance end

the difference is less pronounced, but still present.

To find out whether optimizing the ASR’s output would im-

prove NLU performance, we compare 1-best performance with

the performance using the “best” (in terms ofWER) hypotheses.

Figure 4 (b) shows that this does not result in an improvement. It

seems that re-ranking is inferior to using N hypotheses, which

confirms the strategy used by [6] and extends their results to the

incremental domain.

We noticed that the mean number of concept hypotheses

found in the entire n-best list approaches 1 over time. This

is important because an n-best approach that yields a greater

number would be more difficult to post-process. With this ob-

servation we feel confident that post-processing of n-best ASR

hypotheses from a NLU point-of-view is merited.

In terms of timing, the point of first correctness (CFC), i. e.

the point in the utterance at which a correct hypothesis first oc-

curs in an n-best list compared to the 1-best case, is an indica-

tion of whether n-best lists allow a measurable timing advantage

(resolving speaker intentions sooner). The mean CFC for 1-best

was at 51.2% utterance completion, while for the n-best case it

was 41.0%, a relative improvement of 20%.

To determine the overall utility of a potential gain, how-

ever, the edit overhead (cf. Section 3) of n-best list processing

must be considered. The 1-best case exhibits a mean of 256 ed-

its while the n-best case results in 39368 edits (spread over an

average 117,708 incremental results per utterance). Thus, a po-

tential 20% gain in CFC is accompanied by a 150-fold increase

in EO. This discrepancy could be addressed by post-processing

similar to [3], which we will investigate in future work.
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In an initial look at how this can be accomplished, Fig-

ure 4 (c) describes the distribution of empty, incorrect and cor-

rect NLU hypotheses for the ASR n-best list that provided

both the 20% gain in CFC and the increase in edit overhead.

Utterance-initially the number of correct hypotheses is far lower

than that of the incorrect ones,6 and always than the empty case.

With greater utterance completion, the correct and incorrect val-

ues converge sharply. It thus illustrates that post-processing

must occur in conjunction with timing measures, but also what

these timing measures may be in the future.

6. Discussion and Future Work

Our effort thus far has been to demonstrate potential timing and

accuracy gains in WER and CER, to compare how gains in the

former may effect gains the latter and to establish their overall

utility. The experimental results point towards potential gains

in timing and accuracy performance as well as challenges in

controlling utility trade-offs. Moreover, we were able to deduce

that a post-processing approach of n-best ASR output must be

informed not by properties of the recognition results itself, but

by other measures, most likely timing and semantic ones, since

a gain in CER could not be directly correlated with a gain in

WER.

Finding an optimal operating point for N in terms of accu-

racy and edit overhead is relatively straightforward affair. Fig-

ure 4 (a) points towards a large gain in CER at an optimal N
somewhere between 10 and 20, above which accuracy gains be-

come smaller and the computational trade-off bigger. The mean

edit overhead of limiting N to 11 is 15974, 60 times that of the

1-best baseline, however much more acceptable than the 150-

fold increase seen with a practically limitless N (or at least the

maximum observed in our experiments).

As mentioned in the introduction, we have ignored the

problem of actually finding the 1-best result among our n-best

hypotheses here and leave this for future work. An appropri-

ate approach must however consider the computational impact

(such as edit overhead) and, most importantly, some kind of

measure for ruling out adverse hypotheses. These can take sev-

eral forms (e. g. timing or symbolic ones).

The relationship between correct and incorrect hypotheses

generated by enabling n-best recognition, captured by the (anti-

)oracle WER statistics and CER Figure 4 (d), already point to-

wards initial timing measures. Our experiments detail time as

percentage of completion. These can easily be revised in abso-

lute terms, which in turn can become timeout parameters (e. g.

“do not accept semantic hypotheses before they are t millisec-

onds old”) or break-points at which costly n-best processing can

be turned on or off. Same goes for the first-correctness measure

discussed above.

The ratio of semantically empty to non-empty recognition

hypotheses is a further measure that can be explored, as well

as the lexical/phonetic density of a semantic hypothesis (how

many words/units were used to produce a hypothesis.)

7. Conclusions

We defined and explored timing, accuracy and utility measures

for evaluating n-best lists in an incremental SDS both from a

ASR accuracy and more holistic system point of view.

Our findings point towards potential gains in semantic per-

formance of the SDS through the incremental use of n-best

6Note that the baseline is 1/12, which relativises our error rate.

lists. Moreover, they illustrated that gains in performance of

the incremental speech recognition achieved through n-best list

re-ranking did not necessarily result in better semantic perfor-

mance, from which we conclude that post-processing should

not focus on re-ranking alone. Lastly, relatively low values of

N seem to achieve the best trade-off in accuracy gain and com-

putational overhead.

Some of the results observed are easily translated into real

performance gains for the SDS, such as timeout values. In the

process of exploring these issues we discovered several possible

solutions to the question of how to actually identify the best

hypothesis in the list.
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