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ABSTRACT
The relative contribution of bottom-up and top-down attentional
guidance is a central topic in vision research. Whereas attention
is guided bottom-up by low-level saliency, top-down guidance
involves the viewer’s knowledge and expectations accumulated
throughout a lifetime. Here we explore the influence of high-level
scene-object relations on viewing behavior. To assess top-down
guidance, we score the relevance of linguistic object labels using
methods from document analysis. Specifically, we computed the
term frequency-inverse document frequency (TF-IDF), a statistic
that reflects how important a term is to a document. We use object
TF-IDF to measure how important a specific object is to a scene cat-
egory and use these scores to predict eye movement distributions
over scenes. Our results show that scene-specific objects are more
likely to be fixated. Object TF-IDF had an effect partially indepen-
dent of image saliency, suggesting that an object’s relevance for a
scene category affects attention during scene perception.

CCS CONCEPTS
• Applied computing → Psychology; • Computing method-
ologies → Natural language processing.
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1 INTRODUCTION
We are exposed to a vast amount of information from our envi-
ronment, but our visual system can only process a fragment of
our visual surroundings at a given time. Due to architectural con-
straints of our foveated visual system, we face the concurrent tasks
of analyzing the object at fixation while at the same time selecting
the next object of interest from our low-acuity visual periphery.
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Visual attention in scene perception is prioritized toward particular
regions to process the abundance of information efficiently. Our
eyes repeatedly shift position to focus on regions of interest when
looking at a scene [Yarbus 1967]. A fundamental step in understand-
ing visual processing is to investigate the underlying mechanisms
that produce the shifts in attention reflected by eye movements.

1.1 Bottom-up and top-down guidance of
attention

Theories of visual attention disagree on the relative importance of
low-level scene features [Itti and Koch 2001; Itti et al. 1998] and
of the high-level meaning embedded in a scene [Bar 2004; Hen-
derson 2007; Võ 2021] for visual selection. Theories of bottom-up
visual saliency focus on salient contrasts in low-level perceptual
features [Itti and Koch 2001]. Low-level features encompass the
image-based bottom-up cues, such as luminance, color, intensity,
and orientation. In this approach several low-level feature extrac-
tion processes operate in parallel, and attention is consequently
focused on the most salient or conspicuous scene region while
suppressing the previously attended locations. Whereas theories
based on visual saliency provide an essential understanding of scene
processing and offer biologically inspired computational models
of visual attention [Itti and Koch 2001], theories focusing on top-
down modulation of attention stress the importance of higher-level
conceptual processes such as the viewer’s high-level scene un-
derstanding, knowledge, and expectancies that bias activation in
lower-level feature maps. Whereas bottom-up processing is mostly
driven by visual saliency, higher-level scene understanding makes
contact to linguistic representations. Therefore, the use of linguistic
measures computed on scene descriptions may be useful to demon-
strate top-down guidance of attention in scenes. Here we adapt
one such measure, term frequency-inverse document frequency
(TF-IDF), to show that attention is guided by relevance of objects
for scene classification.

1.2 Meaning-based guidance of attention
A line of research associated with top-down control raises the ques-
tion of whether the meaning embedded in a scene modulates visual
attention [Ferreira and Rehrig 2019; Henderson and Hayes 2018].
Here, meaning-based guidance encompasses the characteristics of
individual objects within a scene as well as how these objects are
arranged and interact with each other [Ferreira and Rehrig 2019;
Hayes and Henderson 2021; Henderson andHayes 2018; Rehrig et al.
2022]. According to the meaning-based approach to visual attention,
the knowledge regarding our visual surroundings is learned over
time through interacting with our environment, and gaze control is
guided by the viewer’s stored information about a particular scene
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category [Henderson 2007]. A scene’s gist is extracted quickly after
scene presentation [Potter 1975], which then activates stored infor-
mation and expectancies in relation to the scene [Võ and Henderson
2010]. Scene-related expectancies modulate how we attend to, iden-
tify, and search for an object. In case of a violation of scene-related
expectancies, inconsistent objects are processed more slowly and
identified with more errors than scene-consistent objects [Bieder-
man et al. 1982; Loftus and Mackworth 1978], suggesting that the
activated contextual information of a scene regulates the cognitive
processing of individual objects [Bar 2004].

1.3 Methods to quantify meaning-based
guidance

Although scene-object relations have been shown to modulate
attentional processing, studies that directly measure the effect of an
object’s contextual meaning on visual attention are scarce. Previous
research aimed to address this question using meaning maps of real-
world images as a measure of object informativeness [Henderson
et al. 2019]. The meaning maps were constructed using ratings
from human annotators that rated individual scene patches based
on their meaningfulness, resulting in a topographical representation
of the scene’s informative parts. When the influence of the resulting
meaning maps on attentional guidance was tested in comparison to
saliency-based maps, meaning maps explained additional variance
in gaze behavior.

Although meaning maps provide a unique way of measuring
how the meaning of scenes affects eye movements, they rely on
laborious human ratings. In a follow-up study, Hayes and Hen-
derson [Hayes and Henderson 2021] used a vector-space model
from computational linguistics to measure an object’s relevance
to a scene category. They scored the object labels based on the
pair-wise cosine similarities among all objects in a scene and in
relation to the scene category labels. They found that high simi-
larity scores increased the likelihood of an object being attended,
further suggesting a link between object meaning and attentional
guidance. Rather than using human ratings of scene patches, this
approach only needs annotated objects.

1.4 The present study
In the present study we extend the findings on attentional guidance
by scene meaning. We propose a category-based object informative-
ness variant of TF-IDF as a new and easily computable measure to
quantify the relevance of an object to a scene. To evaluate whether
object relevance guides attention, we conducted an eye-tracking
experiment using naturalistic indoor scenes and used TF-IDF to pre-
dict gaze fixations. TF-IDF is a statistic widely used in text analysis
that indicates the relevance of a term in a document among a group
of documents. TF-IDF weighs the frequency of a term within a
document by the informativeness of the term across all documents,
thereby favoring document-specific terms. We applied the TF-IDF
logic to assess the importance of objects (terms) for a given scene
category (document), using the ADE20k corpus [Zhou et al. 2019],
which contains an extensive image database of indoor and outdoor
scenes together with dense object annotations. The resulting scores
served as a measure of the object relevance to a scene category, as
they signify the object labels that are diagnostic to a scene (e.g., a

toy in a child’s room) while outweighing the importance of object
labels that might be frequently encountered in an indoor scene
(e.g., a wall). We tested the effect of TF-IDF scores on the allocation
of visual attention represented by an object’s probability of being
fixated, controlling for object size and location.

2 METHODS
2.1 Participants
Twenty-three students from the University of Potsdam (9 male,
mean age: 25.7 years, range: 19 to 38 years) participated in an eye
tracking experiment in exchange for course credit or 10 Euros
per hour of participation. Participants had normal or corrected-to-
normal vision. They were naive as to the purpose of the experiment
and fluent in English. Before starting the experiment, all participants
provided written informed consent.

2.2 Material
Participants viewed 145 house-related indoor scenes that are a
part of the Tell-me-more corpus [Ilinykh et al. 2019], which pro-
vides additional verbal annotations for a subset of the ADE20k
images [Zhou et al. 2019]. The corpus consists of indoor images
and description sequences obtained in an independent experiment,
where participants were asked to produce a multi-sentence descrip-
tion of a scene, imagining that they were asked to "Tell me more"
after each sentence. The resulting dataset of 4410 images contains
five descriptive sentences for each scene in increasing detail as well
as more generic captions for a subset of 411 images. The dataset
contains visual scenes that elicit category-related object expecta-
tions in the viewer along with various possible compositions of
individual objects [Ilinykh et al. 2019]. Additionally, the corpus
provides pixel-level object annotations as they are a part of the
ADE20k corpus [Zhou et al. 2019].

We applied various filters to the Tell-me-more corpus to obtain
a subset appropriate for experimental presentation. Images had to
have a minimum resolution of 760 x 1024 pixels suitable for eye
tracking, generic captions that we could later use in our caption-
matching task (see Procedure), and a minimum caption length to
ensure caption quality. Finally, we sampled from image categories
that have at least 50 examples. The resulting subset consisted of
145 images from 12 scene categories.

2.3 Apparatus
Eye-tracking data were recorded using the EyeLink 1000 system
(SR Research Ltd., Ottawa, Canada) with a sampling rate of 1000 Hz
in a tower mount setup. The eye tracker recorded the gaze position
during binocular viewing. Visual stimuli were rescaled keeping the
aspect ratio intact, and presented on a 27-inch iMac screen. Partici-
pants viewed the images from a 70 cm distance. The experimental
presentation was controlled using MATLAB [MATLAB 2022] using
the Psychophysics [Kleiner et al. 2007] and Eyelink [Cornelissen
et al. 2002] Toolboxes.
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Figure 1: Illustration of TF-IDF as applied to objects in scenes. The three lowest- and highest-scoring object labels are shown
for each of the 12 categories used in the experimental presentation.

2.4 Procedure
We presented each of the 145 images for 10 seconds to allow the
participants to inspect the scenes in sufficient detail. A 9-point cali-
bration was performed at the beginning of the experiment and after
every 15 trials. Each trial started with a fixation cross presented at
the center of the screen for 300 ms, followed by the presentation
of the trial image. After the image presentation, participants were
shown an image description, and their task was to indicate whether
the description matched the previous image by pressing a key but-
ton. We balanced correct and incorrect match conditions, and cor-
rect and incorrect response alternatives were chosen from the same
scene category. We chose the fairly demanding caption-matching
task to ensure keeping the participant’s attention throughout image
presentation. Participants viewed each image once, resulting in 145
trials per participant and approximately 50 minutes of experiment
duration. Presentation order was randomized between participants.
Participants’ eye movements were recorded throughout the experi-
mental presentation.

2.5 Data preparation
2.5.1 Eye-tracking Data Preprocessing. We detected fixations and
saccades using Eyelink’s built-in algorithm that uses motion, veloc-
ity, and acceleration thresholds (0.1°, 30°/s, 8000°/s2, respectively).
We excluded a total of 37 trials (1.1%) due to poor calibration. This
procedure resulted in 97685 fixations in total and an average of
approximately 28 fixations per trial. We paired each fixation point
with the corresponding object label obtained from the ADE20k
corpus [Zhou et al. 2019]. When a fixation point corresponded to
more than one bounding box, we took the smallest corresponding
bounding box into account to ensure the precision of the fixated
object.

2.5.2 Term Frequency-Inverse Document Frequency (TF-IDF). TF-
IDF is a statistical method commonly used in information retrieval.
It was introduced as a method to statistically assess term specifity in
a collection of documents [Jones 1988]. While the TF-IDF score cor-
relates with the term frequency in a document, it is outweighed by
the document frequency in which the term appears, thus offsetting
the importance of generic terms that frequently appear regardless
of the document type. Given the term t in a document d, and D as a
collection of documents, the term frequency (TF), inverse document
frequency (IDF), and TF-IDF are calculated as follows, respectively:

𝑇𝐹 (𝑡, 𝑑) = 𝑓 𝑟𝑒𝑞(𝑡, 𝑑)
|𝑑 | (1)

𝐼𝐷𝐹 (𝑡, 𝐷) = 𝑙𝑜𝑔( |𝐷 |
|𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑 | ) (2)

𝑇𝐹𝐼𝐷𝐹 (𝑡, 𝑑, 𝐷) = 𝑇𝐹 (𝑡, 𝑑) × 𝐼𝐷𝐹 (𝑡, 𝐷) (3)
Here, 𝑓 𝑟𝑒𝑞(𝑡, 𝑑) denotes the number of times the term t appears

in the document d, where |𝑑 | is the total count of terms in the docu-
ment. The total number of documents in the corpus is denoted with
|𝐷 |, whereas |𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑 | indicates the number of documents
with the term t in it.

We applied the TF-IDF method to the object labels obtained from
the ADE20k corpus [Zhou et al. 2019]. In this way, we aimed to
define a measure that represents the relevance of an object (e.g.,
oven) for a particular scene category (e.g., kitchen) while devaluating
object labels that appear frequently regardless of the category (e.g.,
wall). We took the singular form of plural object labels and only
used labels that indicate objects as a whole (e.g., table) and not
object parts (e.g., table leg). We applied this analysis to the whole
ADE20k corpus [Zhou et al. 2019]. The resulting data set contained
869 scene categories and 2270 object labels.
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Figure 2: Three-way interaction of object TF-IDF, object size, and center proximity shown for the lower, median, and upper
quartile values of the predictors. Predictors were only discretized for visualization purposes, they entered as continuous
variables in the analysis.

To compute the TF-IDF score of object labels, we calculated
the term frequency of an object label given a scene category, and
weighted it by the number of scene categories the object label
appears in. Figure 1 illustrates the measure. It depicts the three
highest- and lowest-scored object labels for each scene category
used in our experimental presentation. In general, high object TF-
IDF scores indicate contextually coherent objects of a scene category
(e.g., a pool ball in a pool room), whereas low object TF-IDF scores
are associated with object labels that are not characteristic to a
scene (e.g., sky in a dining room). We used the object TF-IDF scores
as a predictor of gaze behavior.

2.6 Data analysis
We used a binomial generalized linear mixed model (GLMM) with
a logit link function to analyze the effect of object TF-IDF scores on
fixation probability, accounting for possible subject- or scene-based
random effects. Models were fit using the ’lme4’ package [Bates
et al. 2015] in the R statistical computing environment [R Core Team
2022]. The binary dependent variable was an object’s fixated/non-
fixated status, and we added object TF-IDF as a fixed effect. To
control for the well-known effects of center bias and object size on
gaze behavior, we added these as fixed effect covariates. Interactions
of the fixed effects were also analyzed. We fitted random intercepts
for each subject and scene.

2.7 Image Saliency
To assess to what extent object relevance explains variance in eye
movement distributions when low-level saliency is taken into ac-
count, we conducted an additional analysis using object saliency
scores along with TF-IDF. We computed a saliency map for each
image using the Itti and Koch image saliency model [Itti and Koch
2001] and scored each object based on the maximum saliency value
within its bounding box area.

To assess the combined effect of object saliency and relevance
on fixation distributions, as well as the unique effect of relevance,
we fit three GLMMs: The baseline model only included the trivial
covariates of object size and center proximity as fixed effects. We

fit two additional models with the same structure, adding object
saliency to the second model and additionally adding TF-IDF to
the third model. As in the main analysis, scenes and subjects were
added as random effects. We used likelihood ratio tests (LRT) and
a comparison of the Bayesian Information criterion (BIC) among
the three models to evaluate the goodness of fit. LRTs are generally
used in model selection to compare nested models and to decide if
certain predictors should be included. 1

3 RESULTS
3.1 Task performance
Participants responded with an average of 77% correct when judg-
ing whether the image description matched the previous image or
another image from the same category. This fairly weak perfor-
mance suggests that image descriptions often do not narrow down
an individual image within a category.

3.2 Fixation Probability
Results of the best performing model are summarized in Table 1
(Note that due to a large number of interaction effects, we excluded
interaction effects of saliency scores for readability but added the
complete results in the Appendix). Trivially, we found significant
effects of object size and center proximity on the fixation proba-
bility: Larger objects were more likely to be fixated than smaller
objects, and peripheral objects were less likely to be fixated than cen-
tral objects. Object saliency scores significantly increased fixation
probability. Most importantly, we found that higher TF-IDF scores
significantly increased the probability of an object being fixated,
considering all other factors. There were significant interaction
effects among all variables; we illustrate the three-way interaction
effects among the TF-IDF scores, object sizes, and center proximity
in Figure 2. The higher the TF-IDF, the bigger was the size effect.
Irrelevant big objects did not necessarily get fixated. The TF-IDF
effect was stronger for more central objects, possibly indicating

1Data preprocessing and analysis code will be made available at:
https://osf.io/ptury/?view_only=a6748dd9571d408798de6f0e4936c51b

https://osf.io/ptury/?view_only=a6748dd9571d408798de6f0e4936c51b
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Table 1: Results of the Generalized Linear Mixed-Effect Model

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝐸 𝑧 𝑝 𝑠𝑖𝑔

Intercept −0.23 0.05 −4.88 < 0.001 ***
TF-IDF 0.30 0.02 19.64 < 0.001 ***
Saliency 0.13 0.01 11.25 < 0.001 ***
Center Proximity −0.43 0.01 −29.55 < 0.001 ***
Object Size 1.67 0.02 72.54 < 0.001 ***
TF-IDF * Center Proximity −0.16 0.02 −8.01 < 0.001 ***
TF-IDF * Object Size 0.54 0.03 16.61 < 0.001 ***
Center Proximity * Object Size −0.44 0.03 −14.42 < 0.001 ***
TF-IDF * Center Proximity * Object Size −0.32 0.04 −7.56 < 0.001 ***

Table 2: Results of Likelihood Ratio Tests

𝑀𝑜𝑑𝑒𝑙 BIC Chisq Df p

Baseline Model 95538
Saliency Model 92086 3497.04 4 < 0.001
Full Model (Saliency + TF-IDF) 91573 604.27 8 < 0.001

limits of peripheral acuity for object identification. The three-way
interaction indicates that both two-way interactions were mainly
driven by relatively big objects (Examples of different object sizes
and center proximity can be found in the Appendix).

Results of the analysis including saliency are summarized in
Table 2. First, we found that the saliency model was a significantly
better fit to the data when compared to the null model which in-
cluded only the fixed effect covariates of object sizes and center
proximity. Importantly, the full model, which additionally included
object TF-IDF fit the eyemovement distributions significantly better
than the saliency model. BIC scores agree with LRTs in suggesting
that the full model should be preferred, as evident by its lower BIC
score.

4 DISCUSSION
We continuously gather information structures through repeated
exposure to similar compositions within our environment and use
the accumulated information to perceive and act upon the world
efficiently. The knowledge and expectancies regarding our visual
surroundings bring about a top-down modulation of visual process-
ing following a rapid extraction of gist information. Building upon
this approach, our study explored how scene-object relations affect
fixation behavior. We showed that objects of high diagnostic value
to a particular scene category are more likely to be attended. The ef-
fect of object relevance held when saliency was taken into account.
This suggests a combined influence of object relevance and saliency
on attentional allocation, where higher-level scene knowledge and
expectancies drive attentional selection along with image-based
conspicuous features. Our results support the notion that previ-
ously learned information about our environment guides attention
toward the objects that are contextually coherent with that envi-
ronment. Assessing contextual relevance might aid computational
models of visual attention and lead to more accurate predictions of
attentional allocation during scene viewing. Our study extends the

findings regarding the role of scene semantics on visual perception
(for a review, see [Henderson et al. 2019]) and offers an easy-to-
compute method to assess certain object characteristics relative to
a scene. The object TF-IDF measure is a potentially informative tool
for any scene. Given that automated image annotation methods
are readily available [He et al. 2017], our approach is potentially
available for a wide variety of images. This opens up a new avenue
to scene understanding.

Assessing what object labels repeatedly occur specific to a scene
category can inform how likely an object will be encountered in
that environment and how characteristic that object is to the scene,
providing a useful measure to predict where attention will be di-
rected. Our dataset consists of real-world indoor scenes where
contextual inconsistencies and surprisal are unlikely. In the ab-
sence of a violation of the expectations, viewers tended to be more
attentive to highly relevant scene regions in comparison to objects
that were less informative about the classification of a scene. Be-
sides the contextual informativeness of individual objects, typical
object arrangements and locations constitute a scene’s meaning.
Previous work focused on the processing of spatially inconsistent
objects in scenes and found that such objects are associated with
slower attentional processing, suggesting a link between object ar-
rangements and attentional guidance [Võ and Henderson 2009]. A
text-based frequency approach similar to the present one might aid
in assessing what objects are likely to co-occur in different scenes
to test how these arrangements correlate with visual attention.

When assessing attentional guidance, the sequential nature of
viewing is important in addition to the spatial distribution of at-
tention, which we focused on in our current analysis. A scan path
analysis in relation to scene meaning will further inform whether
top-down influences facilitate attentional priority. The meaning-
guided approach to scene understanding brings about further ques-
tions at the intersection of verbal and visual attention. We organize
and put our thoughts in a certain order during language production,
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thus linearizing our speech [Levelt 1989]. Linearization is essential
when we describe a visual scene, where we need to incrementally
process the visual details of a scene and verbalize them sequen-
tially. Previous work on the linearization phenomenon showed that
when speakers describe scenes, they visually attend to meaningful
and informative parts, suggesting that visual and linguistic pro-
cessing of scenes operate in coordination and are predominantly
facilitated by meaning [Ferreira and Rehrig 2019]. The findings on
multimodal processing entail a further exploration of how these cog-
nitive modalities interact and to what extent top-down influences
modulate these processes. Our experimental paradigm involved
the reading of a scene description following an image presentation,
thus, an in-depth analysis of viewing patterns during sentence read-
ing might inform the nature of the attended expressions and their
relation to the previously attended scene’s characteristics.

Scene understanding is a complex process involving the viewer’s
generic knowledge about the world, expectancies, tasks, and goals.
Building upon the present study of the scenemeaning, we can better
understand top-down guidance of human attention. In particular,
we have shown that object distinctiveness, as measured by object
TF-IDF, drives attentional selection. We are confident that further
linguistics-inspired analyses of visual scenes can provide important
insights into how we interpret and “read” visual scenes.
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