
Towards No-Code Programming of Cobots:
Experiments with Code Synthesis by Large Code

Models for Conversational Programming

Chalamalasetti Kranti1, Sherzod Hakimov1, and David Schlangen1,2

1Computational Linguistics, Department of Linguistics
University of Potsdam, Germany

2German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
{kranti.chalamalasetti, sherzod.hakimov, david.schlangen}@uni-potsdam.de

Abstract: While there has been a lot of research recently on robots in household
environments, at the present time, most robots in existence can be found on shop
floors, and most interactions between humans and robots happen there. “Collabo-
rative robots” (cobots) designed to work alongside humans on assembly lines tra-
ditionally require expert programming, limiting ability to make changes, or man-
ual guidance, limiting expressivity of the resulting programs. To address these
limitations, we explore using Large Language Models (LLMs), and in particular,
their abilities of doing in-context learning, for conversational code generation. As
a first step, we define RATS, the “Repetitive Assembly Task”, a 2D building task
designed to lay the foundation for simulating industry assembly scenarios. In this
task, a ‘programmer’ instructs a cobot, using natural language, on how a certain
assembly is to be built; that is, the programmer induces a program, through natu-
ral language. We create a dataset that pairs target structures with various example
instructions (human-authored, template-based, and model-generated) and exam-
ple code. With this, we systematically evaluate the capabilities of state-of-the-art
LLMs for synthesising this kind of code, given in-context examples. Evaluating
in a simulated environment, we find that LLMs are capable of generating accurate
‘first order code’ (instruction sequences), but have problems producing ‘higher-
order code’ (abstractions such as functions, or use of loops).

Keywords: Program Synthesis, Cobots, Repetitive Assembly Tasks

1 Introduction

Collaborative robots (cobots), designed to work safely alongside humans, have traditionally required
expert programming [1, 2], hindering wider accessibility for novice workers. To bridge this gap,
conversational programming is emerging as a possible solution, demanding systems that can parse
human input, grasp context, and craft corresponding programs [3] interactively. While historically
methods have relied on domain-specific model training and learning by demonstration, these tech-
niques often fall short due to their extensive data needs and inability to handle complex instruc-
tions [4, 5, 6, 7]. This necessitates exploring efficient alternative approaches for cobot programming,
such as program synthesis.

Program synthesis from natural language instructions (NL2Code) is an active research area in Nat-
ural Language Processing, leveraging LLMs for tasks like code completion, debugging, and gen-
erating programs from natural language descriptions [8, 9, 10, 11]. In robotics, LLMs have been
increasingly used for task planning [12, 13, 14, 15], grounding [16, 17, 18], and instruction follow-
ing, focusing primarily on immediate, specific actions [19, 20, 21, 22] for “here and now” scenarios.

ar
X

iv
:2

40
9.

11
04

1v
2

 [
cs

.C
L

]
 1

8
Se

p
20

24

Environment Grounding

We are building the M5 nut assembly.
Stack a nut and washer in the 5th row
and 3rd column. Use red for the nut
and yellow for the washer.

prompt

LLM
output

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Simulation
Environment

Code Execution

NL Instruction

Places a red nut Stacks a washer on
the nut

Initial World
View

Program
Synthesis
output: code

Immediate & Specific Situation

R
ep

ea
ta

bl
e

C
od

e NL2Cobot
Programming

output: action code

Robotic Instruction
Execution

output: action

2

1
3 4

Figure 1: Overview of NL2Cobot Programming, demonstrating the abstraction of user instructions
into a high-level executable function and its execution in a simulated environment.

However, replicating these instructions in new environments require generating a new set of actions
each time, which can be inefficient and cumbersome. Instead, abstracting robot actions as higher-
order programs makes them adaptable, repeatable, and generalizable to novel environments, signif-
icantly improving flexibility and efficiency, which is essential for industrial contexts. Our research
(see Figure 1) sits between traditional program synthesis (generating code for programmers who
understand it) and robot instruction following (generating robot actions, not repeatable programs).

The proposed work focuses on the step from natural language to programs for building assemblies
in a construction setting. As such, it is related to that of Paetzel-Prüsmann et al. [23]; however, we
abstract away questions of the physical execution of the programs on a robot and instead simulate
the setting and the effects of pick and place operations.

Our key contributions are as follows:

• A component assembly dataset with different categories of objects and styles of instructions
(Section 3)

• An evaluation methodology to assess program synthesis capabilities of LLMs (Section 4)
• An experimental setup and comprehensive analysis of differences in program synthesis

behavior between commercial and open-access code generation LLMs (also Section 4)

2 Related Work

Program Synthesis: There exist several natural-language-to-code (NL2Code) datasets [24, 25, 26,
27] for training machine learning models [8, 9, 28, 29, 10, 11]. Numerous studies have utilized
these datasets to explore the capabilities of LLMs, as surveyed by [30, 31, 32]. While these studies
demonstrate the ability of LLMs to generate and complete code, they predominantly target users
familiar with programming concepts and terminologies. In contrast, our work focuses on code gen-
eration in an industrial context, where the end-users are novice workers without programming back-
grounds. This raises challenges in dealing with ambiguous instructions, domain-specific knowledge
that LLMs might not be aware of, and insufficient context, making it a necessary area for exploration.

Building Tasks: In the virtual block world of Minecraft, datasets have emerged from structure-
building tasks [33, 34, 35], linking instructions with actions in a 3D grid. These datasets resemble
industry-assembly tasks involving detailed instructions and actions. However, these tasks’ high
complexity, lack of spatial constraints and intricate instructions challenge even the best current
LLMs [36], limiting their applicability to such collaboarative 3D building tasks. Furthermore, these
datasets lack tasks involving repeating target structures, which is common in cobot applications. On

2

washer screw nut

bridge-h bridge-v

Available colors

8x8 2D Grid

Available components

World View Simple Boards Regular Boards

Figure 2: Overview of the environment with available components, and samples of simple and
regular boards.

the other hand, LLMs have shown promising performance in abstract spatial tasks [37, 38] in 2D
controlled environment, highlighting their abstraction, reasoning and execution capabilities. This
discrepancy inspired us to propose a 2D building task that is tailored for controlled industrial envi-
ronments and includes repetitive tasks and giving us an opportunity to measure different aspects of
LLMs abilities in synthesizing code.

Instruction-Following Tasks: A favored domain in this space is human-agent interaction for house-
hold tasks [39, 40, 41], where the focus is on a single execution from a given starting point of
command. This is typically framed as generating a sequence of actions (and hence a straightfor-
ward form of program which is not intended to be repeated). Similar to our setting, HEXAGONS
dataset [42] aims to translate natural language instructions into programs potentially using higher-
level constructs such as loops. However, this dataset focuses more on simulating drawing rather than
constructions; as we will see, our dataset puts more weight on introducing assemblies that, in turn,
can be built out of smaller assemblies.

3 Simulating Industry-Style Assembly with 2D Building Tasks

Our proposed 2D building task takes inspiration from HEXAGONS [42] and MINECRAFT Collab-
orative Building [33]. The goal, just as in those datasets, is to reconstruct a given target structure;
here, however, the structures strongly suggest a recursive analysis (e.g., “A being built out of two
Bs; with the board in turn being assembled out of repeated As”), with meaning given to the sub-
components (e.g., “now D is built out of Bs again, but this time we need three Bs”).

The simulated environment features a 2D grid where each cell can hold configurations of elementary
components. Specifically, we have modeled common industrial components: washers, nuts, screws,
and bridges (horizontal or vertical), available in colors: red, green, blue, and yellow. Bridges span
two cells (either horizontally or vertically), while washers, nuts, and screws occupy a single cell.
There are additional rules about what configurations are legal (see Section 7.1 in Appendix 7).

A target structure is a specific arrangement of components on the 2D grid. If components are con-
nected (imagine that this would allow electricity to flow through the components), we refer to the
configuration as constituting a single object. Simple boards contain only one single object, whereas
regular boards consist of regular patterns of a single object type. Examples are shown in Figure 2.

3.1 Target Structure Generation

3

World View

put(board, 'bridge-v', 'green', 6, 2)
put(board, 'washer', 'yellow', 6, 3)
put(board, 'bridge-h', 'red', 6, 2)

def bwb(board, colors, x, y):
 put(board, 'bridge-v', 'green', x=6, y=2)
 put(board, 'washer', 'yellow', x=6, y=3)
 put(board, 'bridge-h', 'red', x=6, y=2)

def bwb(board, colors, x, y):
 shapes = ['bridge-v', 'washer', 'bridge-h']
 for shape, color, dx, dy in zip(shapes, colors,
 [0, 0, 0], [0, 1, 0]):
 put(board, shape, color, x + dx, y + dy)

First-order code Higher-order code
integrating first-order code

HIgher-order optimal code

Figure 3: Various gold standard code styles represent the target structure: (a) features first-order code
snippet using primitive controls, (b) code includes higher-order functions built from this first-order
code, and (c) code featuring optimal higher-order functions.

To facilitate the creation of objects, we represent the 2D grid as an array. This array-based rep-
resentation allows for precise control and manipulation of shape placements. By abstracting the
arrangement of components on the grid into a Python program, we can systematically generate nu-
merous objects. To control task complexity, we defined a limited number of such python programs
(referred to as seeds, and expressed using Jinja21 templates) on an 8x8 grid and extrapolated them
with all the possible combinations of components, colors and locations. Table 1 details these seeds
and the number of possible objects and boards across the four quadrants of the grid. The code
snippet representing each board serves as the gold-standard code during the evaluation. We further
expand these programs to generate two additional forms using Jinja2 templates (see Figure 3): (a)
first-order code, involving a series of put commands, and (b) a higher-order function that integrates
these first-order code sequences.

3.2 Instruction Generation

Board Type Object Type NS NO NB
Simple Simple 18 68 152,352

Regular Simple 5 68 45,984
Complex 10 68 156,948

Table 1: Distribution of generated boards across
all categories; NS: number of seeds, used to gen-
erate the boards, NO: number of distinct objects,
NB: number of boards generated using all color
and shape combinations

At this step, we have pairs of target boards and
code (in three variations) that generates them.
Next, we add appropriate natural language in-
structions that verbalise the code and describe
the target board, in three different ways. Fig-
ure 4 showcases the different types of instruc-
tions.

Template-based: To generate natural language
instructions automatically, we use templates
(see Section 7.2 in Appendix 7) that include
grammar entries defined in Jinja2 format (inspired by work on data synthesis in other domains,
e.g. [43, 44]). These templates generate detailed, unambiguous instructions for the target board
reconstruction.

Human-written: In addition to template-based instructions, we curated human-written instructions
to add natural and varied linguistic style for the target boards in the test set (see Table 2). Using
the slurk [45] framework, we implemented an interface to collect human-written instructions for the
target boards. We recruited one human participant for this task. The participant’s task was to prepare
instructions to reconstruct a given target board. Specifics of the setup is available in Section 7.3 in
Appendix 7.

Model-generated: We employed an LLM to generate the required instructions to reconstruct the
target board. The rationale behind using LLMs for this process includes their adaptability to a) gen-
erate instructions with varying nuances, b) maintain a standard and consistent format, and c) support
multiple languages. Furthermore, experiments evaluating the effectiveness of such instructions for
code generation offer opportunities for automation. Similar to human-written instructions, we gen-
erated these instructions for the target boards in the test set (see Table 2). Figure 4 showcases the
instructions generated by three code-generation LLMs for reconstructing the board. Particulars on
the input representation (ASCII representation of the target board is used in probing the model),
prompt settings etc. are discussed in detail in Section 7.4 in Appendix 7.

1https://palletsprojects.com/p/jinja/

4

https://palletsprojects.com/p/jinja/

These are the instructions to build bwb. Place a green bridge
vertically in the 7th row, 3rd column. Place a yellow washer in the
7th row, 4th column. Place a red bridge horizontally in the 7th row,
3rd column.

Place a 'bbb' object in the first, and fifth columns of the first row.
Then, repeat this placement pattern in the fifth row. Use only
these colors: ['green', 'red', 'blue'] for the 'bbb' object.

These are the instructions to build bwb. Place a green vertical
bridge in the 7th row, 3rd column. Put a yellow washer in the 7th
row, 4th column. Now stack a red horizontal bridge on top of the
upper half of the green bridge and the washer.

Place one bbb object in the top left corner. The upper horizontal
bridge is green, the other one is red. The vertical bridge is blue. Put
another bbb object in the same colors in the 5th row, 1st column.
Position a third bbb object in the same colors in the first row, 5th
column. Place another bbb object in the same colors in the 5th
row, 5th column.

Template-Based
Instructions

Human-Written
Instructions

World View

(i) Simple Boards (ii) Regular Boards

CodeLlama-34B
s: Place a green vertical bridge in cell (7, 3). Place a red horizontal
bridge in cell (7, 4). Place a yellow washer in cell (7, 4). Object
Name: 'bwb'.

s: Place a green vertical bridge at row 7, column 3 of the grid to
start building the bwb object. Then, stack a red horizontal bridge
on top of the green vertical bridge at row 7, column 3. Finally,
place a yellow washer at row 7, column 4 to complete the bwb
object.

Place a green vertical bridge at Row 7, Col 3. Place a red horizontal
bridge on top of the green vertical bridge at Row 7, Col 3. Place a
yellow washer at Row 7, Col 4.

GPT-4

Claude-3

s: Place 'bbb' in colors ['green', 'red', 'blue'] at Row(1), Col(1). Place
'bbb' in colors ['green', 'red', 'blue'] at Row(1), Col(5). Place 'bbb' in
colors ['green', 'red', 'blue'] at Row(5), Col(1). Place 'bbb' in colors
['green', 'red', 'blue'] at Row(5), Col(5).

Place 'bbb' with colors ['green', 'red', 'blue'] at row 1, column 1.
Place 'bbb' with colors ['green', 'red', 'blue'] at row 1, column 5.
Place 'bbb' with colors ['green', 'red', 'blue'] at row 5, column 1.
Place 'bbb' with colors ['green', 'red', 'blue'] at row 5, column 5.

Place a 'bbb' with colors green, red, blue at row 1, column 1. Place
a 'bbb' with colors green, red, blue at row 1, column 5. Place a
'bbb' with colors green, red, blue at row 5, column 1. Place a 'bbb'
with colors green, red, blue at row 5, column 5.

Figure 4: Three types of instructions pair with the simple and regular boards. Template-based
instructions are generated using a template grammar. Human-author instructions are prepared by a
human instructor. The remaining instructions are generated by three LLMs that describe the target.

4 Experimental Setup: From Language to Robot Programs

At this point, we now have tuples consisting of a) code and b) natural language expressions, c) both
of which describe the same target structure. With this setup, we can investigate to what extent LLMs
can realise a function that takes NL expressions into code, with the meaning (the target structure) as
invariant; where the function retrieval is possibly being helped by in-context learning from examples.

We design our experiments to delve deeply into the generalizations [46] these models can make. We
are interested in the following aspects of the process: a) Property Compositionality - can models
generalize from in-context examples that are similar yet vary in properties such as shape, color, and
location? By curating examples that differ from the test instructions, we assess whether the model is
merely copying or generalizing. b) Function Compositionality - do the semantic understanding and
pattern matching abilities of LLMs aid in generating higher-order code? and c) Function Repeata-
bility - can LLMs detect and reason how to repeat higher-order functions as per input instructions?
This aspect tests LLMs’ on two fronts: understanding abstract instructions and optimizing code for
repetitions. Such an approach is particularly relevant in cobot programming, where repetitive tasks
demand optimal handling.

4.1 Setup

Board Type Object Type Total Boards
Train Val Test

Simple Simple 1072 130 130

Regular Simple 1168 130 130
Complex 2944 130 130

Table 2: Breakdown of board and object types for
training, validation, and test splits. Out of all the
possible boards available (see Table 1), these sam-
ples were randomly selected.

Following previously reported prompting ap-
proaches [47, 12, 19], we constructed a multi-
part prompt, which we validated through an ab-
lation study (see Figure 7a, Table 4f in Ap-
pendix 7). We used instruction-tuned code gen-
eration LLMs such as GPT-4 (version 1106-
preview), CodeLlama-34b-instruct [29] and
Claude-3 (version opus), with a temperature of
0 and a max new tokens limit of 250.

For evaluation purposes, we randomly selected
130 target boards (see Table 2) modeled on a 8x8 grid (see Figure 2). Training split samples featured

5

target boards in the grid’s top-left quadrant, validation samples in the top-right, and test samples in
either bottom quadrant, ensuring coverage of all grid areas. The training split is used exclusively for
in-context samples (see Figure 6 in Appendix 7.5). Our ablation study (detailed in Appendix 7.5.1)
indicated that using five in-context examples yields the best results across various LLMs. We ensured
the in-context examples did not share combinations of component types, and locations with the
test instruction, which offers an opportunity to measure the LLMs responses for un-seen attributes
and instructions. In real-world application, we lack control over in-context examples, and related
examples are not necessarily detrimental. Thus, our results provide a lower bound on performance.
The validation set is used for ablation studies, and the test set is used for evaluation.

4.2 Evaluation Metrics

Compared to program synthesis and machine translation, our proposed task benefits from a known
target configuration (i.e., a fully specified intended semantics), enabling a more nuanced evalua-
tion of the generated output. First, we use exact match (EM) to compare the generated code with
the gold-standard code (of the target structure) at the token level, assessing the LLMs’ ability to
produce semantically identical outputs. Second, the CodeBLEU score [48] evaluates the structural
and functional quality of the generated code, testing the LLMs’ capability to generate lexically and
semantically correct code. Finally, we use execution success (ES) to compare the reconstructed
structure with the gold-standard structure in terms of type, color, and location of elements to mea-
sure the LLMs’ success in accurately reconstructing the target. This comprehensive evaluation (see
Figure 11, Section 7.7 in Appendix 7) examines semantic understanding, code quality, and precise
execution abilities of the LLMs.

5 Results and Analysis

As discussed in Section 4, we investigate, how well LLMs benefit from in-context learning. Table 3
shows LLMs performance on various aspects of program synthesis and the impact of component
arrangement complexity. Overall these models perform better on template-based instructions and the
performance degraded for human-written and model-generated instructions. Detailed error analysis
is provided in Appendix (Table 5 in Section 7.6).

Property Compositionality: We assess if LLMs can synthesize input instructions into first-order
code for unseen instructions and attributes. High scores across all measurements (EM, CB, and
ES) show that LLMs are good at interpreting the instruction, extracting the attributes such as color,
shape, and location, mapping the locations to the current environment (an 8x8 grid), and generating
semantically identical code. This demonstrates that domain specific first-order code generation is
achievable with few-shot prompting in both open-source and closed API-based LLMs.

Function Compositionality: We further investigate if LLMs show high performance on functional
compositionality, assessing their ability to generate higher-order functions by abstracting the func-
tionality into reusable programs. Zero scores for EM metric indicate that the generated code is not
semantically identical to the ground truth and may have formatting discrepancies. Lower ES scores
indicate that LLM-generated code struggles to accurately reconstruct the target board, highlighting
the challenges in complex scenarios.

Manual analysis of model responses (as illustrated in Figure 5), revealed factors reducing the ex-
ecution scores. CodeLlama-34b had location-related errors in 89% of template-based and 95%
of human-written instructions, causing depth mismatches and incorrect placements. GPT-4 and
Claude-3 also had location-related errors, with all errors in GPT-4 and 95% in Claude-3 due to
incorrect locations. This indicates that in-context learning is less-effective for complex function
generation and requires further exploration.

Function Repeatability: We continue our analysis of LLMs abilities in generating loops, including
nested ones for function repeatability. Zero EM scores result from strict matching criteria. While
models perform well with simple objects, they struggle with complex objects, due to intricate pat-

6

Board
Type

Object
Type Task Model EM CB ES

Simple Simple

Property Compositionality
CodeLlama 0.97 0.99 0.97

GPT-4 1.00 1.00 1.00
Claude-3 1.00 1.00 1.00

Function Compositionality
(Using sequences of first-order code)

CodeLlama 0 1.00 0.96
GPT-4 0 1.00 1.00

Claude-3 0 0.75 0.93

Function Compositionality
(Using optimal higher-order code)

CodeLlama 0 0.95 0.52
GPT-4 0 0.95 0.56

Claude-3 0 0.97 0.87

Regular

Simple

Function Repeatability

CodeLlama 0 0.99 0.75
GPT-4 0 0.96 1.00

Claude-3 0 0.95 0.86

Complex
CodeLlama 0 0.22 0.09

GPT-4 0 0.49 0.30
Claude-3 0 0.51 0.10

(a) Template-based Instructions

Board
Type

Object
Type Task Model EM CB ES

Simple Simple Function Compositionality
(Using optimal higher-order code)

CodeLlama 0 0.95 0.28
GPT-4 0 1.00 0.17

Claude-3 0 0.79 0.43

Regular

Simple

Function Repeatability

CodeLlama 0 0.34 0.07
GPT-4 0 0.49 0.31

Claude-3 0 0.69 0.25

Complex
CodeLlama 0 0.08 0.07

GPT-4 0 0.09 0.28
Claude-3 0 0.11 0.04

(b) Human-written Instructions

Board
Type

Object
Type Task Model EM CB ES

Simple Simple Function Compositionality
(Using optimal higher-order code)

CodeLlama 0 0.64 0.04
GPT-4 0 0.85 0.22

Claude-3 0 0.92 0.23

Regular Simple Function Repeatability
CodeLlama 0 0.19 0

GPT-4 0 0.19 0.13
Claude-3 0 0.09 0.33

(c) Model-generated Instructions

Table 3: Code generation LLMs’ performance across aspects of program synthesis. Evaluation
includes atomic component placement (first-order code) and sequence arrangement (higher-order
function generation), assessing the LLMs’ ability to translate natural language input into executable
code; EM - Exact Match, CB - Code BLEU, ES - Execution Success.

7

These are the instructions to build
bnbns. Place a red bridge horizontally
in the 6th row, 2nd column. Place a
blue nut in the 7th row, 3rd column.
Place a green bridge vertically in the
6th row, 3rd column. Place a red nut in
the 6th row, 3rd column. Place a yellow
screw in the 6th row, 3rd column.

Input Instruction

def bnbns(board, colors, x, y):
 shapes = ['bridge-h', 'nut',
 'bridge-v', 'nut', 'screw']
 for shape, color, dx, dy in zip(shapes, colors,
 [0, 1, 0, 0, 0], [0, 1, 1, 1, 1]):
 put(board, shape, color, x + dx, y + dy)

Ground Truth Code

Starting from the top-left corner, place
the 'ns' object in alternating columns of
the first row, each occupying a 1x1
space. Continue until there's
insufficient space at the grid's end for a
full object. Then, repeat this pattern in
alternating rows. Use only these
colors: ['green', 'blue'] for the 'ns'
object.

Ground Truth Code

def ns(board, colors, x, y):
 shapes = ['nut', 'screw']
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

for row in range(0, 8, 2):
 for col in range(0, 8, 2):
 ns(board, colors=['green', 'blue'],
 x=row, y=col)

Input Instruction

These are the instructions to build
wnbw. Place a red washer in the 5th
row, 1st column. Place a blue nut in the
5th row, 2nd column. Place a green
bridge horizontally in the 5th row, 1st
column. Place a red washer in the 5th
row, 2nd column.

Input Instruction

def wnbw(board, colors, x, y):
 shapes = ['washer', 'nut', 'bridge-h', 'washer']
 for shape, color, dx, dy in zip(shapes, colors,
 [0, 0, 0, 0], [0, 1, 0, 1]):
 put(board, shape, color, x + dx, y + dy)

Ground Truth Code

Ground Truth Generated Response
CodeLlama GPT-4

Wrong
location

Claude-3

change in
structure

CodeLlama GPT-4 Claude-3
Ground Truth Generated Response

CodeLlama GPT-4 Claude-3
Ground Truth Generated Response

Misinterpretatio
n of instruction Hallucination

Misinterpretation of instruction lead to
placing the objects again in the same
location and lead to execution failure

Wrong
location

Figure 5: Execution response of the code generated by models. It highlights the types of errors
encountered, including incorrect object placement, structural distortions, and hallucinations.

terns requiring overlap management. GPT-4 was effective when objects don’t overlap. Claude-3
often hallucinated, with about 79% of errors linked to this problem. CodeLlama had about 92% of
errors resulting from failure to consider overlaps. These results highlight the challenges of learning
repetitions and the difficulty of incorporating this ability through in-context learning alone.

Our comprehensive analysis reveals that in-context learning is beneficial for LLMs in generating
first-order code and handling simple loops, but underscore the need for more advanced techniques
in generating code for complex and nested functions.

6 Conclusion and Limitations

This paper explores the program synthesis capabilities of code-generating LLMs, whose understand-
ing can significantly enhance conversational programming for cobots. To this end, we developed a
rapid prototyping simulator environment that evaluates these LLMs using specific input instructions,
simulate their execution, and analyzes the output. This approach establishes a strong baseline for
future studies. Our findings reveal promising results for template-based instructions that generate
first-order code and functions composed of sequences of first-order code. However, performance
significantly declines with optimal higher-order functions and complex patterns that require reason-
ing about object overlap in repetitions. Such a finding indicates a pressing need for further inves-
tigation. Similarly the LLMs performance for human-written and model-generated instructions is
considerably lower compared to template-based instructions, calls for a detailed exploration. In fu-
ture work, we plan to expand the setup to handle more complex sequence arrangements added with
dialogue management. Additionally, we will explore fine-tuning the code generation LLMs to see if
it improves their overall performance.

Though LLMs have shown promising performance for the 2D building task, there are limitations.
The seeds for target board generation focus only on simple objects; we plan to include complex
objects to better assess capabilities. The template-based instructions were designed to be clear and
unambiguous, establishing a performance baseline. Future work will include environmental vari-
ability, collaborative scenarios, and dialogue management to enhance real-world simulation. De-
spite careful prompt curation, models sometimes produce hallucinations. Refining prompts based
on feedback from execution errors can help. Instruction-tuned LLMs for code generation may strug-
gle with multi-turn conversations, and applying this work to real-world assembly tasks will require
adherence to safety principles.

8

Acknowledgments

The work reported here has been funded by the Bundesministerium für Bildung und Forschung
(BMBF, German Federal Ministry of Research), project ”COCOBOTS” (01IS21102A).

References
[1] S. E. Zaatari, M. Marei, W. Li, and Z. Usman. Cobot programming for collaborative industrial

tasks: An overview. Robotics Auton. Syst., 116:162–180, 2019. doi:10.1016/J.ROBOT.2019.
03.003. URL https://doi.org/10.1016/j.robot.2019.03.003.

[2] G. Giannopoulou, E. Borrelli, and F. McMaster. ”programming - it’s not for normal people”:
A qualitative study on user-empowering interfaces for programming collaborative robots. In
30th IEEE International Conference on Robot & Human Interactive Communication, RO-MAN
2021, Vancouver, BC, Canada, August 8-12, 2021, pages 37–44. IEEE, 2021. doi:10.1109/
RO-MAN50785.2021.9515535. URL https://doi.org/10.1109/RO-MAN50785.2021.

9515535.

[3] J. V. Brummelen, K. Weng, P. Lin, and C. Yeo. Convo: What does conversational programming
need? an exploration of machine learning interface design. CoRR, abs/2003.01318, 2020. URL
https://arxiv.org/abs/2003.01318.

[4] A. M. Bauer, D. Wollherr, and M. Buss. Human-robot collaboration: a survey. Int. J. Humanoid
Robotics, 5(1):47–66, 2008. doi:10.1142/S0219843608001303. URL https://doi.org/

10.1142/S0219843608001303.

[5] D. Mukherjee, K. Gupta, L. H. Chang, and H. Najjaran. A survey of robot learning strategies
for human-robot collaboration in industrial settings. Robotics Comput. Integr. Manuf., 73:
102231, 2022. doi:10.1016/J.RCIM.2021.102231. URL https://doi.org/10.1016/j.

rcim.2021.102231.

[6] L. D. Rozo, S. Calinon, D. G. Caldwell, P. Jiménez, and C. Torras. Learning physical collabora-
tive robot behaviors from human demonstrations. IEEE Trans. Robotics, 32(3):513–527, 2016.
doi:10.1109/TRO.2016.2540623. URL https://doi.org/10.1109/TRO.2016.2540623.

[7] J. Berg and S. Lu. Review of interfaces for industrial human-robot interaction. Current
Robotics Reports, 1:27–34, 2020.

[8] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, and et al. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.

org/abs/2107.03374.

[9] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong.
Codegen: An open large language model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?

id=iaYcJKpY2B_.

[10] Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang. Magicoder: Source code is all you need. arXiv
preprint arXiv:2312.02120, 2023.

[11] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, Y. K. Li,
F. Luo, Y. Xiong, and W. Liang. Deepseek-coder: When the large language model meets
programming - the rise of code intelligence. CoRR, abs/2401.14196, 2024. doi:10.48550/
ARXIV.2401.14196. URL https://doi.org/10.48550/arXiv.2401.14196.

[12] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, and et al. Do as I can,
not as I say: Grounding language in robotic affordances. In Conference on Robot Learning,

9

http://dx.doi.org/10.1016/J.ROBOT.2019.03.003
http://dx.doi.org/10.1016/J.ROBOT.2019.03.003
https://doi.org/10.1016/j.robot.2019.03.003
http://dx.doi.org/10.1109/RO-MAN50785.2021.9515535
http://dx.doi.org/10.1109/RO-MAN50785.2021.9515535
https://doi.org/10.1109/RO-MAN50785.2021.9515535
https://doi.org/10.1109/RO-MAN50785.2021.9515535
https://arxiv.org/abs/2003.01318
http://dx.doi.org/10.1142/S0219843608001303
https://doi.org/10.1142/S0219843608001303
https://doi.org/10.1142/S0219843608001303
http://dx.doi.org/10.1016/J.RCIM.2021.102231
https://doi.org/10.1016/j.rcim.2021.102231
https://doi.org/10.1016/j.rcim.2021.102231
http://dx.doi.org/10.1109/TRO.2016.2540623
https://doi.org/10.1109/TRO.2016.2540623
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
http://dx.doi.org/10.48550/ARXIV.2401.14196
http://dx.doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/arXiv.2401.14196

CoRL 2022, 14-18 December 2022, Auckland, New Zealand, volume 205 of Proceedings of
Machine Learning Research, pages 287–318. PMLR, 2022. URL https://proceedings.

mlr.press/v205/ichter23a.html.

[13] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot plan-
ners: Extracting actionable knowledge for embodied agents. In International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research, pages 9118–9147. PMLR, 2022. URL
https://proceedings.mlr.press/v162/huang22a.html.

[14] A. Zeng, M. Attarian, B. Ichter, K. M. Choromanski, A. Wong, S. Welker, F. Tombari, A. Puro-
hit, M. S. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, and P. Florence. Socratic models:
Composing zero-shot multimodal reasoning with language. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net, 2023. URL https://openreview.net/pdf?id=G2Q2Mh3avow.

[15] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu, P. Florence, I. Mordatch, S. Levine,
K. Hausman, and B. Ichter. Grounded decoding: Guiding text generation with grounded mod-
els for robot control. CoRR, abs/2303.00855, 2023. doi:10.48550/ARXIV.2303.00855. URL
https://doi.org/10.48550/arXiv.2303.00855.

[16] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar,
Y. Zhu, and L. Fan. VIMA: general robot manipulation with multimodal prompts. CoRR,
abs/2210.03094, 2022. doi:10.48550/ARXIV.2210.03094. URL https://doi.org/10.

48550/arXiv.2210.03094.

[17] S. Huang, L. Dong, W. Wang, Y. Hao, S. Singhal, S. Ma, T. Lv, L. Cui, O. K. Mo-
hammed, B. Patra, Q. Liu, K. Aggarwal, Z. Chi, N. J. B. Bjorck, V. Chaudhary, S. Som,
X. Song, and F. Wei. Language is not all you need: Aligning perception with language
models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, edi-
tors, Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/

e425b75bac5742a008d643826428787c-Abstract-Conference.html.

[18] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Van-
houcke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. Palm-e:
An embodied multimodal language model. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, editors, International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learn-
ing Research, pages 8469–8488. PMLR, 2023. URL https://proceedings.mlr.press/

v202/driess23a.html.

[19] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policies: Language model programs for embodied control. In IEEE International Conference
on Robotics and Automation, ICRA 2023, London, UK, May 29 - June 2, 2023, pages 9493–
9500. IEEE, 2023. doi:10.1109/ICRA48891.2023.10160591. URL https://doi.org/10.

1109/ICRA48891.2023.10160591.

[20] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason,
and A. Garg. Progprompt: program generation for situated robot task planning using large
language models. Auton. Robots, 47(8):999–1012, 2023. doi:10.1007/S10514-023-10135-3.
URL https://doi.org/10.1007/s10514-023-10135-3.

[21] B. Li, P. Wu, P. Abbeel, and J. Malik. Interactive task planning with language models.
CoRR, abs/2310.10645, 2023. doi:10.48550/ARXIV.2310.10645. URL https://doi.org/

10.48550/arXiv.2310.10645.

10

https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v162/huang22a.html
https://openreview.net/pdf?id=G2Q2Mh3avow
http://dx.doi.org/10.48550/ARXIV.2303.00855
https://doi.org/10.48550/arXiv.2303.00855
http://dx.doi.org/10.48550/ARXIV.2210.03094
https://doi.org/10.48550/arXiv.2210.03094
https://doi.org/10.48550/arXiv.2210.03094
http://papers.nips.cc/paper_files/paper/2023/hash/e425b75bac5742a008d643826428787c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e425b75bac5742a008d643826428787c-Abstract-Conference.html
https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.mlr.press/v202/driess23a.html
http://dx.doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591
http://dx.doi.org/10.1007/S10514-023-10135-3
https://doi.org/10.1007/s10514-023-10135-3
http://dx.doi.org/10.48550/ARXIV.2310.10645
https://doi.org/10.48550/arXiv.2310.10645
https://doi.org/10.48550/arXiv.2310.10645

[22] J. X. Liu, Z. Yang, I. Idrees, S. Liang, B. Schornstein, S. Tellex, and A. Shah. Grounding
complex natural language commands for temporal tasks in unseen environments. In Con-
ference on Robot Learning, CoRL 2023, 6-9 November 2023, Atlanta, GA, USA, volume
229 of Proceedings of Machine Learning Research, pages 1084–1110. PMLR, 2023. URL
https://proceedings.mlr.press/v229/liu23d.html.

[23] M. Paetzel-Prüsmann, J. Hunter, K. Chalamalasetti, K. Thompson, A. Nicolaou, O. Güngör,
D. Schlangen, and N. Asher. Conversational programming for collaborative robots. In ICRA
Workshop on Collaborative Robots and Work of the Future (ICRA 2022 CoR-WotF), pages
1–5, 2022.

[24] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating structured queries from natural
language using reinforcement learning. CoRR, abs/1709.00103, 2017. URL http://arxiv.

org/abs/1709.00103.

[25] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, and et al. Codexglue:
A machine learning benchmark dataset for code understanding and generation. In Pro-
ceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.
URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/

c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html.

[26] J. Austin, A. Odena, M. I. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. J. Cai,
M. Terry, Q. V. Le, and C. Sutton. Program synthesis with large language models. CoRR,
abs/2108.07732, 2021. URL https://arxiv.org/abs/2108.07732.

[27] D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M. Ferrandis, Y. Jernite, M. Mitchell,
S. Hughes, T. Wolf, D. Bahdanau, L. von Werra, and H. de Vries. The stack: 3 TB of permis-
sively licensed source code. CoRR, abs/2211.15533, 2022. doi:10.48550/ARXIV.2211.15533.
URL https://doi.org/10.48550/arXiv.2211.15533.

[28] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, and et al.
Llama 2: Open foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi:
10.48550/ARXIV.2307.09288. URL https://doi.org/10.48550/arXiv.2307.09288.

[29] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez,
J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. Canton-Ferrer, A. Grattafiori,
W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom,
and G. Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950,
2023. doi:10.48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.

2308.12950.

[30] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. C. Grundy, and
H. Wang. Large language models for software engineering: A systematic literature review.
CoRR, abs/2308.10620, 2023. doi:10.48550/ARXIV.2308.10620. URL https://doi.org/

10.48550/arXiv.2308.10620.

[31] M. Wong, S. Guo, C. N. Hang, S. Ho, and C. Tan. Natural language generation and un-
derstanding of big code for ai-assisted programming: A review. Entropy, 25(6):888, 2023.
doi:10.3390/E25060888. URL https://doi.org/10.3390/e25060888.

[32] D. Zan, B. Chen, F. Zhang, D. Lu, B. Wu, B. Guan, Y. Wang, and J. Lou. Large language
models meet nl2code: A survey. In A. Rogers, J. L. Boyd-Graber, and N. Okazaki, editors,
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pages 7443–7464. Asso-
ciation for Computational Linguistics, 2023. doi:10.18653/V1/2023.ACL-LONG.411. URL
https://doi.org/10.18653/v1/2023.acl-long.411.

11

https://proceedings.mlr.press/v229/liu23d.html
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://arxiv.org/abs/2108.07732
http://dx.doi.org/10.48550/ARXIV.2211.15533
https://doi.org/10.48550/arXiv.2211.15533
http://dx.doi.org/10.48550/ARXIV.2307.09288
http://dx.doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
http://dx.doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
http://dx.doi.org/10.48550/ARXIV.2308.10620
https://doi.org/10.48550/arXiv.2308.10620
https://doi.org/10.48550/arXiv.2308.10620
http://dx.doi.org/10.3390/E25060888
https://doi.org/10.3390/e25060888
http://dx.doi.org/10.18653/V1/2023.ACL-LONG.411
https://doi.org/10.18653/v1/2023.acl-long.411

[33] P. Jayannavar, A. Narayan-Chen, and J. Hockenmaier. Learning to execute instructions in
a minecraft dialogue. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 2589–2602. Associ-
ation for Computational Linguistics, 2020. doi:10.18653/V1/2020.ACL-MAIN.232. URL
https://doi.org/10.18653/v1/2020.acl-main.232.

[34] C. Bara, S. CH-Wang, and J. Chai. Mindcraft: Theory of mind modeling for situated dialogue
in collaborative tasks. In Proceedings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021, pages 1112–1125. Association for Computational Linguistics, 2021.
doi:10.18653/V1/2021.EMNLP-MAIN.85. URL https://doi.org/10.18653/v1/2021.

emnlp-main.85.

[35] A. Skrynnik, Z. Volovikova, M. Côté, A. Voronov, A. Zholus, N. Arabzadeh, S. Mo-
hanty, M. Teruel, A. Awadallah, A. Panov, M. Burtsev, and J. Kiseleva. Learning to
solve voxel building embodied tasks from pixels and natural language instructions. CoRR,
abs/2211.00688, 2022. doi:10.48550/ARXIV.2211.00688. URL https://doi.org/10.

48550/arXiv.2211.00688.

[36] C. Madge and M. Poesio. Large language models as minecraft agents. CoRR, abs/2402.08392,
2024. doi:10.48550/ARXIV.2402.08392. URL https://doi.org/10.48550/arXiv.

2402.08392.

[37] S. Mirchandani, F. Xia, P. Florence, B. Ichter, D. Driess, M. G. Arenas, K. Rao, D. Sadigh,
and A. Zeng. Large language models as general pattern machines. In J. Tan, M. Toussaint,
and K. Darvish, editors, Conference on Robot Learning, CoRL 2023, 6-9 November 2023,
Atlanta, GA, USA, volume 229 of Proceedings of Machine Learning Research, pages 2498–
2518. PMLR, 2023. URL https://proceedings.mlr.press/v229/mirchandani23a.

html.

[38] Y. Xu, W. Li, P. Vaezipoor, S. Sanner, and E. B. Khalil. Llms and the abstraction and reason-
ing corpus: Successes, failures, and the importance of object-based representations. CoRR,
abs/2305.18354, 2023. doi:10.48550/ARXIV.2305.18354. URL https://doi.org/10.

48550/arXiv.2305.18354.

[39] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. ALFRED: A benchmark for interpreting grounded instructions for everyday tasks. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seat-
tle, WA, USA, June 13-19, 2020, pages 10737–10746. Computer Vision Foundation / IEEE,
2020. doi:10.1109/CVPR42600.2020.01075. URL https://openaccess.thecvf.com/

content_CVPR_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_

Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html.

[40] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-Chen, S. Gella, R. Pi-
ramuthu, G. Tür, and D. Hakkani-Tür. Teach: Task-driven embodied agents that chat. In
Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 -
March 1, 2022, pages 2017–2025. AAAI Press, 2022. doi:10.1609/AAAI.V36I2.20097. URL
https://doi.org/10.1609/aaai.v36i2.20097.

[41] S. Shrestha, Y. Zha, S. Banagiri, G. Gao, Y. Aloimonos, and C. Fermüller. Natsgd: A
dataset with speech, gestures, and demonstrations for robot learning in natural human-robot
interaction. CoRR, abs/2403.02274, 2024. doi:10.48550/ARXIV.2403.02274. URL https:

//doi.org/10.48550/arXiv.2403.02274.

12

http://dx.doi.org/10.18653/V1/2020.ACL-MAIN.232
https://doi.org/10.18653/v1/2020.acl-main.232
http://dx.doi.org/10.18653/V1/2021.EMNLP-MAIN.85
https://doi.org/10.18653/v1/2021.emnlp-main.85
https://doi.org/10.18653/v1/2021.emnlp-main.85
http://dx.doi.org/10.48550/ARXIV.2211.00688
https://doi.org/10.48550/arXiv.2211.00688
https://doi.org/10.48550/arXiv.2211.00688
http://dx.doi.org/10.48550/ARXIV.2402.08392
https://doi.org/10.48550/arXiv.2402.08392
https://doi.org/10.48550/arXiv.2402.08392
https://proceedings.mlr.press/v229/mirchandani23a.html
https://proceedings.mlr.press/v229/mirchandani23a.html
http://dx.doi.org/10.48550/ARXIV.2305.18354
https://doi.org/10.48550/arXiv.2305.18354
https://doi.org/10.48550/arXiv.2305.18354
http://dx.doi.org/10.1109/CVPR42600.2020.01075
https://openaccess.thecvf.com/content_CVPR_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html
http://dx.doi.org/10.1609/AAAI.V36I2.20097
https://doi.org/10.1609/aaai.v36i2.20097
http://dx.doi.org/10.48550/ARXIV.2403.02274
https://doi.org/10.48550/arXiv.2403.02274
https://doi.org/10.48550/arXiv.2403.02274

[42] R. Lachmy, V. Pyatkin, A. Manevich, and R. Tsarfaty. Draw me a flower: Processing and
grounding abstraction in natural language. Trans. Assoc. Comput. Linguistics, 10:1341–1356,
2022. URL https://transacl.org/ojs/index.php/tacl/article/view/3961.

[43] A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan. Towards scalable multi-domain
conversational agents: The schema-guided dialogue dataset. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-
12, 2020, pages 8689–8696. AAAI Press, 2020. doi:10.1609/AAAI.V34I05.6394. URL
https://doi.org/10.1609/aaai.v34i05.6394.

[44] T. Aksu, Z. Liu, M. Kan, and N. F. Chen. Velocidapter: Task-oriented dialogue comprehen-
sion modeling pairing synthetic text generation with domain adaptation. In Proceedings of
the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGdial
2021, Singapore and Online, July 29-31, 2021, pages 133–143. Association for Computational
Linguistics, 2021. URL https://aclanthology.org/2021.sigdial-1.14.

[45] J. Götze, M. Paetzel-Prüsmann, W. Liermann, T. Diekmann, and D. Schlangen. The slurk
interaction server framework: Better data for better dialog models. In Proceedings of the
Thirteenth Language Resources and Evaluation Conference, LREC 2022, Marseille, France,
20-25 June 2022, pages 4069–4078. European Language Resources Association, 2022. URL
https://aclanthology.org/2022.lrec-1.433.

[46] D. Hupkes, V. Dankers, M. Mul, and E. Bruni. Compositionality decomposed: How do neural
networks generalise? J. Artif. Intell. Res., 67:757–795, 2020. doi:10.1613/JAIR.1.11674. URL
https://doi.org/10.1613/jair.1.11674.

[47] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, and et al. Language models
are few-shot learners. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[48] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco, and
S. Ma. Codebleu: a method for automatic evaluation of code synthesis. CoRR, abs/2009.10297,
2020. URL https://arxiv.org/abs/2009.10297.

[49] K. Chalamalasetti, J. Götze, S. Hakimov, B. Madureira, P. Sadler, and D. Schlangen. clem-
bench: Using game play to evaluate chat-optimized language models as conversational agents.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, pages 11174–11219. Association for Com-
putational Linguistics, 2023. URL https://aclanthology.org/2023.emnlp-main.689.

13

https://transacl.org/ojs/index.php/tacl/article/view/3961
http://dx.doi.org/10.1609/AAAI.V34I05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://aclanthology.org/2021.sigdial-1.14
https://aclanthology.org/2022.lrec-1.433
http://dx.doi.org/10.1613/JAIR.1.11674
https://doi.org/10.1613/jair.1.11674
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2009.10297
https://aclanthology.org/2023.emnlp-main.689

7 Appendix

7.1 Simulated Environment

As mentioned in Section 3, our proposed simulated environment uses a 2D grid of size 8x8, where
each cell of the grid can hold a component. Any specific arrangement of components on the grid
should adhere to the rules such as a) components of the same type or color cannot be stacked on
each other and b) components can be placed atop one another as long as the depths (the number
of cells occupied by the components) match, with the sole exception that no components can be
placed on a screw. These rules allow us to construct component arrangements that resemble real-
world style assemblies. Each such arrangement, where the components are connected, in such a way
that electricity flows throw them is referred as an object. These objects are categorized as simple
and complex based on their configurations. Simple objects are basic configurations of up to five
components and no more than three stacks.

7.2 Template-Based Instructions

Instruction Templates: We employed a standard template grammar for generating instructions
based on templates. Simple boards are organized into two categories: a) multi-turn and b) single-
turn. As illustrated in Figure 16a, multi-turn instructions consist of sequential steps described over
’n’ turns. In contrast, single-turn instructions, depicted in Figure 16b, compile all steps necessary to
construct a target structure within a single turn. For regular boards, the template grammar applied
to simple and complex objects is presented in Figure 17 and Figure 18, respectively. Both templates
articulate the specific arrangements utilized. Moreover, the complex object templates include place-
holders for each object’s space, which is critical for the instruction follower when generating the
construction code.

Code Templates: Figures 19-25 showcase the Jinja2 templates used for generating the code for
higher-order functions for the manually curated code seeds (see Section 3.1). The placeholders
for shapes, colors, and locations are replaced with appropriate values during the board generation
process.

7.3 Human-Written Instructions

As mentioned in Section 3.1, we curated human instructions for the test set (see Table 2) to measure
how well the LLMs grasp human abstractions and communication styles for the code generation.
We developed a bot using slurk [45] interface, which features a target board on the left and a text
input area on the right for writing the instructions to reconstruct it. A student assistant from our
department was recruited for this task, which took approximately 20hours to complete.

7.4 Model-Generated Instructions

As described in Section 3.2, LLMs are used to describe the target structure. These descriptions are
later used as part of the component assembly task for generating the associated code. Using the
clembench framework [49], we setup the process of describing the target structure as a clemgame.
In this game, the game master probes the player (a code generation LLM) with the grid details
represented in a textual format as shown in the Figure 8 and Figure 9 using zero-shot prompting
techniques [47, 12, 19] to generate the textual instructions.

7.5 Prompt Structure

The principal objective of the proposed work is to investigate the capability of the LLM in capturing
the procedural steps involved in arranging components in a specific sequence, generating an abstract
code representation that is both execution-ready and applicable within the simulation environment.
To achieve execution readiness, the LLM must extract requisite details from instructions and trans-
form them into an intended structural format expressed through context information and in-context

14

samples. Building on this, we construct a multi-part prompt (shown in Figure 7a) to probe the LLM.
Each section of this prompt is designed to convey distinct pieces of information, clearly defining the
task’s goals and expected response for the LLM.

System Information guides the LLM toward the overall desired outcome. The simulation setup uses
distinct names for components based on their orientation properties, which is crucial for the LLM
to identify and utilize the correct names accurately. In our simulation setup, columns increase along
the x-axis, and rows along the y-axis. It is important to note that the numbering begins at the top,
unlike the conventional approach, which starts at the bottom. This places the top-left corner as the
first row and first column. Understanding this unique orientation is essential for the LLM to translate
spatial information from instructions into code correctly. Therefore, these specifics are included as
part of the environment information.

Following this, the context information specifies the functions available in the environment, elimi-
nating the need for the LLM to generate new code for these functions. After the context information,
task information provides the labels the LLM should use in its responses. This assists the parser in
identifying and extracting the relevant responses. In-context samples, which come next, illustrate
the types of instructions and associated actions the LLM encounters. In adherence to prompt en-
gineering best practices, we have also included explicit instructions to prevent the generation of
explanations or instructions other than the responses labeled as specified in the task information. All
the experiments for property compositionality, function compositionality, and function repeatability
follow the same prompt structure but differ in terms of the in-context samples they use. The structure
of in-context samples used for each of these experiments is shown in Figure 6).

7.5.1 Ablation Study

We conducted an ablation study to investigate the impact of various parts of the prompt on overall
task performance. We used the validation split of the dataset to perform the study. Table 4f pro-
vides a comprehensive overview of the ablation study results, presenting the performance metrics
for different prompt configurations. The analysis focuses on determining optimal prompts for cap-
turing procedural steps and generating execution-ready, simulation-applicable code representations.
Each row in the table corresponds to a specific prompt structure element, and the columns include
relevant performance metrics, such as the execution score for each code LLM, to quantify the im-
pact of these elements on the overall effectiveness in code generation. The results demonstrate that
the structure shown in Figure 7a is optimal for all the tasks and LLMs used in our experiments.
Overall, the prompting structure lacking task information and in-context samples deteriorated the
performance, while adding environment and context information improved the performance slightly.
System details helped guiding the desired outcome from LLM. Therefore, we use a prompt structure
comprising system, environment, task, context, five in-context samples and other information for the
remaining experiments.

7.5.2 Selection of In-context Samples

The training split is used to select in-context samples for prompts. Our ablation study described
above shows that using five in-context samples yields the best results across various LLMs. We
dynamically prepare examples for each sample in the test split, ensuring they do not share the test
instruction’s component combination to avoid overlap and bias. From this pool, five random samples
are chosen for each test sample, maintaining their uniqueness and relevance. Figure 6 and Figure 15
displays examples illustrating simple boards and regular boards highlighting the tailored in-context
samples for each scenario.

7.6 Detailed Error Analysis

The detailed error analysis focuses on issues that lead to reduced execution scores for the LLM-
generated response, as showcased in Table 5. These errors are broadly classified into two categories:
board placement errors and element mismatch errors. Board placement errors refer to instances

15

System + Env + Task + Context + Other
Information …

Instruction
place a yellow bridge vertically in the 6th row, 4th column

Output
put(board, shape='bridge-v', color='yellow', x=5, y=3)

Instruction
place a green nut in the 5th row, 2nd column

Output
put(board, shape='nut', color='green', x=4, y=1)

Instruction
place a red washer in the 7th row, 7th column

System + Env + Task + Context + Other
Information …

Instruction
These are the instructions to build bws. Place a green
horizontal bridge in the 7th row, 5th column. Place a yellow
washer in the 7th row, 5th column. Place a red screw in the
7th row, 6th column..

Function
def bws (board, colors, x, y):
 put(board, "bridge-h", ‘green’, x=6, y=4)
 put(board, "washer", ‘yellow’, x=6, y=4)
 put(board, "screw", ‘red’, x=6, y=5)

Usage
board = bws(board, ['green', 'yellow', ‘red’], 6, 4)

Instruction
These are the instructions to build bns. Place a blue
horizontal bridge in the 1st row, 1st column. Place a yellow
nut in the 1st row, 2nd column. Place a green washer in the
1st row, 2nd column.

Function
def bns (board, colors, x, y):
 put(board, "bridge-h", ‘green’, x=0, y=0)
 put(board, "nut", ‘blue’, x=0, y=1)
 put(board, "washer", ‘yellow’, x=0, y=1)

Usage
board = bns(board, [‘green’, 'blue', 'yellow'], 5, 1)

Instruction
These are the instructions to build nwb. Place a red
nut in the 4th row, 4th column. Place a green
washer in the 5th row, 4th column. Place a yellow
vertical bridge in the 4th row, 4th column.

In
-C

on
te

xt
 S

am
pl

es
Te

st
 In

st
ru

ct
io

n

(i) Property Compositionality (ii) Function Compositionality (series of
first-order code)

Pr
om

pt

H
ea

de
r

System + Env + Task + Context + Other
Information …

Instruction
These are the instructions to build bws. Place a green
horizontal bridge in the 7th row, 5th column. Place a
yellow washer in the 7th row, 6th column. Place a red
screw in the 7th row, 6th column..

Function
def bws (board, colors, x, y):
 shapes = ['bridge-h', 'washer', 'screw']
 for shape, color, dx, dy in zip(shapes, colors,
 [0, 0, 0], [0, 1, 1]):
 put(board, shape, color, x + dx, y + dy)
Usage
board = bws(board, ['green', 'yellow', ‘red’], 6, 4)

Instruction
These are the instructions to build bns. Place a blue
horizontal bridge in the 1st row, 1st column. Place a
yellow nut in the 1st row, 2nd column. Place a green
washer in the 1st row, 2nd column.

Function
def bns (board, colors, x, y):
 shapes = ['bridge-h', 'nut', 'green’]
 for shape, color, dx, dy in zip(shapes, colors,
 [0, 0, 0], [0, 1, 1]):
 put(board, shape, color, x + dx, y + dy)
Usage
board = bns(board, ['blue', ‘yellow’, 'green'], 0, 0)

Instruction
These are the instructions to build nwb. Place a
red nut in the 4th row, 4th column. Place a green
washer in the 5th row, 4th column. Place a yellow
vertical bridge in the 4th row, 4th column.

(iii) Function Compositionality (higher-order
code)

Figure 6: Illustration of prompt for evaluating property and function compositionality. Left: first-
order code examples with varied component properties (name, color, location) for property compo-
sitionality testing. Middle: the construction of higher-order functions from first-order code snippets
for function compositionality evaluation. Right: the construction of higher-order functions with
optimal code for function compositionality evaluation.

where the generated response cannot be executed, while element mismatch errors occur when the
execution has discrepancies in location, color, or component.

The following list highlights the different scenarios where board placement errors can occur.

1. Syntax Error: Incorrect indentation or inclusion of non-Python code, such as hallucina-
tions.

2. Key Error: Use of colors or components not supported in the environment.

3. Name Error: References to unsupported functions or random function calls.

4. Value Error: Placement of bridges at grid boundaries, specifically the 7th row for vertical
bridges and the 7th column for horizontal bridges.

5. Dimensions Mismatch Error: Locations specified outside the grid boundaries, exceeding
an 8x8 grid.

6. Depth Mismatch Error: Stacking of horizontal or vertical bridges without proper depth
alignment.

7. Bridge Placement Error: Stacking of bridges at height-3 or higher.

8. Same Shape Stacking Error, Same Shape At Alternate Levels Error: Occur when
identical shapes are stacked incorrectly.

9. Not On Top Of Screw Error: Placement of components on top of a screw.

It is important to note that the target structures used in the test split Table 2 do not contain any
invalid scenarios that may cause these errors. Ideally, if the information is accurately extracted from
the instructions, none of these errors would occur. The quantitative analysis described in Table 3
demonstrate that models struggle to interpret the instructions and extract relevant information, often
making mistakes in associating the correct order, color, count, and location of components.

16

7.7 Evaluation Metrics

We have followed three different metrics to evaluate the LLM generated code. First, we use exact
matching to compare the generated code with the ground truth code. Figure 12 showcases how this
measurement uses a strict equality criterion for matching. The generated code (examples indicated
by generated code-1, 2, 3, 4, 5 in Figure 12) is compared with the ground truth string and any
mismatches (formatting, logical, or functional) in the code are treated as a failure. This score is
useful to measure the perfect accuracy, but is inefficient in capturing semantic logic. Second, we
use Code BLEU score to measure the syntactic accuracy of the generated code. The Code BLEU
score [48] (CB) uses weighted combination of n-gram match, syntactic AST match and semantic
data-flow match. We use the python package, codebleu 2 to compute the score. calc codebleu() API
takes the ground truth code and generated code as inputs and returns the overall Code BLEU score.
Figure 13 shows how the CB score varies for differences in the generated code w.r.t the ground
truth code. This score is useful to measure the syntactic correctness and is unreliable in capturing
the overall accuracy. Lastly, we use execution success to measure how accurately the target board
is reconstructed. Figure 14 demonstrates how the current grid state changes after the execution of
the generated code. The example generated code-1, 2, and 3 share the same world state (row:5,
column: 3 has two components: nut:red and washer:yellow) as the ground truth and are treated
as successes. Although the example generated code-4 shares similar location and component types
with the ground truth code, they differ in the colors associated with each component type (nut:yellow
and washer:red) and is marked as a failure. Similarly, the example generated code-5 has a different
component (screw:red) at the location(row:5, column: 3) and is marked as a failure. Thus, the
execution success score captures semantic identicalness, functional correctness, making it reliable
for target board reconstruction tasks.

2https://github.com/k4black/codebleu

17

https://github.com/k4black/codebleu

TEMPLATE 7.7.1

System Info

You are a helpful assistant who is
designed to interpret and translate
natural language instructions into
python executable code snippets.

Environment Info

The environment is an 8x8 grid
allowing shape placement and stacking.
A shape can be placed in any cell,
while stacking involves adding
multiple shapes to the same cell,
increasing its depth. Shapes
typically occupy a single cell, except
for the "bridge," which spans two
cells and requires two other shapes
for stacking. Horizontal bridges span
adjacent columns (left and right), and
vertical ones span consecutive rows
(top and bottom). Stacking is only
possible if the shapes have matching
depths.

In the grid, columns align with the
x-axis and rows with the y-axis.
Python indexing is used to identify
each cell. The cell in the top-left
corner is in the first row and first
column, corresponding to x and y
values of 0, 0. Similarly, the
top-right corner cell is in the first
row and eighth column, with x and y
values of 0, 7.

- Use the shape name ’bridge-h’ if
a bridge is placed horizontally - Use
the shape name ’bridge-v’ if a bridge
is placed vertically

Context Info

The following functions are already
defined; therefore, do not generate
additional code for it

- Use ‘put(board: np.ndarray, shape:
string, color: string, x: int, y:
int) to place a shape on the board

(a) base structure of prompt

TEMPLATE 7.7.2

TASK INFO

The TASK INFO varies for each of the
sub-tasks (property compositionality
and function compositionality).

For each instruction labeled
$INSTRUCTION LABEL please respond
with code under the label
$OUTPUT LABEL followed by a newline.

INCONTEXT SAMPLES

The INCONTEXT SAMPLES varies for
each of the sub-tasks (property
compositionality and function
compositionality). Refer to
Figure 6 and Figure 15

OTHER DETAILS

Do not generate any other
text/explanations.

Ensure the response can be executed
by Python ‘exec()‘, e.g.: no
trailing commas, no periods, etc.
Lets begin

(b) task and in-context samples

Figure 7: Prompt templates used for code generation for the tasks of Property Compositionality
and Function Compositionality. The system information specifies system level behavior, the en-
vironment information indicates the environment details of the simulation framework, the context
information describes the available functions that can be reused, task information indicates the spe-
cific response format to follow based on task type (differs for property compositionality and function
compositionality)

18

Model Number of In-Context Samples
0 1 2 3 4 5 6 7 8 9 10

CodeLlama-7B 0.53 0.90 0.92 0.95 0.95 0.95 0.95 0.97 0.98 0.99 0.98
CodeLlama-13B 0.92 0.89 0.94 0.95 0.95 0.97 0.97 0.97 0.96 0.98 0.96
CodeLlama-34B 1.00 0.95 0.98 0.99 0.98 1.00 1.00 0.99 1.00 1.00 1.00
Mistral-7B-v0.1 0.05 0.11 0.10 0.09 0.13 0.15 0.12 0.12 0.11 0.12 0.10
Mistral-7B-v0.2 0.02 0.07 0.10 0.11 0.09 0.10 0.12 0.11 0.12 0.13 0.12
StabilityAI-3B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(a) Optimal number of in-context samples for the property compositionality task

Model Number of In-Context Samples
0 1 2 3 4 5 6 7 8 9 10

CodeLlama-7B 0.01 0.80 0.89 0.92 0.95 0.94 0.89 0.93 0.89 0.92 0.85
CodeLlama-13B 0.52 0.73 0.77 0.80 0.81 0.82 0.94 0.93 0.94 0.93 0.91
CodeLlama-34B 0.75 0.67 0.89 0.92 0.95 0.99 1.00 1.00 0.99 1.00 1.00
Mistral-7B-v0.1 0.00 0.27 0.45 0.48 0.42 0.34 0.37 0.34 0.40 0.35 0.32
Mistral-7B-v0.2 0.02 0.24 0.25 0.23 0.25 0.20 0.32 0.35 0.35 0.29 0.30
StabilityAI-3B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) Optimal number of in-context samples for the function compositionality task (higher-order code from se-
quences of first-order code)

Model Number of In-Context Samples
0 1 2 3 4 5 6 7 8 9 10

CodeLlama-7B 0.01 0.16 0.22 0.23 0.29 0.25 0.27 0.29 0.829 0.31 0.34
CodeLlama-13B 0.52 0.18 0.28 0.37 0.42 0.39 0.46 0.43 0.45 0.46 0.48
CodeLlama-34B 0.75 0.13 0.30 0.35 0.43 0.41 0.45 0.44 0.42 0.46 0.49
Mistral-7B-v0.1 0.00 0.11 0.10 0.09 0.13 0.15 0.12 0.12 0.11 0.12 0.10
Mistral-7B-v0.2 0.02 0.07 0.10 0.11 0.09 0.10 0.12 0.11 0.12 0.13 0.12
StabilityAI-3B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(c) Optimal number of in-context samples for the function compositionality task (higher-order optimal code)

Model Number of In-Context Samples
0 1 2 3 4 5 6 7 8 9 10

CodeLlama-34B 0.01 0.89 0.63 0.68 0.70 0.75 0.82 0.82 0.82 0.83 0.80

(d) Optimal number of in-context samples for the function repeatability task for the simple objects

Model Number of In-Context Samples
0 1 2 3 4 5 6 7 8 9 10

CodeLlama-34B 0.00 0.01 0.04 0.02 0.05 0.05 0.07 0.07 0.05 0.05 0.06

(e) Optimal number of in-context samples for the function repeatability task (complex objects)
Prompt Structure CodeLlama-34b

S + E + C + T + O + I* 0.41
E + C + T + O + I* 0.35
S + C + T + O + I* 0.39
S + E + T + O + I* 0.37
S + E + C + O + I* 0.33
S + E + C + T + I* 0.30

(f) Impact of prompt structure elements on code generation LLM performance for the functional composition-
ality task. S: System Information, E: Environment Information, C: Context Information, T: Task Information,
I: In-context Samples, I*: 5 In-context Samples, O: Other Information.

Table 4: Overview of ablation study experiments for the optimal number of in-context samples and
the prompt structure

19

Board
Type

Object
Type Task Error Category CodeLlama GPT-4 Claude-3

Simple Simple

Property
Compositionality

Total 8 0 0
Syntax Error 3 0 0

Mismatch Location 3 0 0
Mismatch Shape 2 0 0

Function
Compositionality

(Using sequences of
first-order code)

Total 5 0 9
Syntax Error 0 0 9

Mismatch Count 2 0 0
Mismatch Location 2 0 0

Mismatch Shape 1 0 0

Function
Compositionality

(Using higher-order
optimal code)

Total 62 57 17
Depth Mismatch 16 34 11

Dimensions Mismatch 3 5 4
Bridge Placement 6 3 0

Value Error 0 0 1
Mismatch Location 6 5 0

Mismatch Count 26 10 1
Mismatch Shape 1 0 0

Same Shape Stacking 2 0 0
Same Shape At Alternate Levels 2 0 0

(a) Detailed error analysis for the template-based instructions
Board
Type

Object
Type Task Error Category CodeLlama GPT-4 Claude-3

Simple Simple

Function
Compositionality

(Using higher-order
optimal code)

Total 94 108 74
Depth Mismatch 37 59 39

Dimensions Mismatch 3 9 5
Bridge Placement 15 4 5

Value Error 2 5 4
Syntax Error 0 0 4

Mismatch Location 9 6 1
Mismatch Color 1 0 0
Mismatch Count 23 24 16

Same Shape Stacking 2 0 0
Same Shape At Alternate Levels 2 1 0

(b) Detailed error analysis for the human-authored instructions
Board
Type

Object
Type Task Error Category CodeLlama GPT-4 Claude-3

Simple Simple

Function
Compositionality

(Using higher-order
optimal code)

Total 125 101 100
Depth Mismatch 43 88 82

Dimensions Mismatch 5 1 0
Bridge Placement 14 0 1

Value Error 11 3 4
Name Error 1 0 0
Syntax Error 8 0 7

Not On Top Of Screw 11 0 0
Mismatch Location 13 0 0

Mismatch Count 8 9 4
Mismatch Shape 3 0 0

Same Shape Stacking 4 0 2
Same Shape At Alternate Levels 4 0 0

(c) Detailed error analysis for the model-generated instructions

Table 5: Overview of detailed error analysis for simple boards across all the tasks

20

Board
Type

Object
Type Task Error Category CodeLlama-34b GPT-4 Claude-3

Regular

Simple

Function
Repeatability

Total 33 0 18
Depth Mismatch 4 0 1
Bridge Placement 5 0 0

Mismatch Location 18 0 0
Syntax Error 0 0 16
Name Error 2 0 0

Same Shape At Alternate Levels 3 0 1
Same Shape Stacking 1 0 0

Complex

Total 119 91 117
Depth Mismatch 4 1 2

Dimensions Mismatch 3 0 7
Bridge Placement 7 4 2

Value Error 11 10 5
Syntax Error 2 0 92
Name Error 2 0 0

Mismatch Location 72 43 6
Mismatch Count 9 25 2
Mismatch Color 0 1 0
Mismatch Shape 1 5 1

Not On Top Of Screw 2 1 0
Same Shape At Alternate Levels 6 1 0

(a) Detailed error analysis for the template-based instructions
Board
Type

Object
Type Task Error Category CodeLlama-34b GPT-4 Claude-3

Regular

Simple

Function
Repeatability

Total 121 90 98
Depth Mismatch 5 0 2

Dimensions Mismatch 7 5 0
Bridge Placement 6 2 2

Value Error 8 3 2
Syntax Error 6 0 72
Name Error 2 0 1
Key Error 12 0 1
Type Error 4 0 0

Mismatch Location 32 18 2
Mismatch Count 14 6 2
Mismatch Color 24 55 14

Same Shape At Alternate Levels 1 1 0

Complex

Total 121 94 125
Depth Mismatch 1 0 2

Dimensions Mismatch 13 6 3
Bridge Placement 3 0 3

Value Error 23 9 2
Syntax Error 6 6 103
Name Error 7 0 0
Key Error 22 0 1

Mismatch Location 19 17 6
Mismatch Color 20 53 4
Mismatch Count 7 3 0

Same Shape Stacking 0 0 1

(b) Detailed error analysis for the human-authored instructions
Board
Type

Object
Type Task Error Category CodeLlama-34b GPT-4 Claude-3

Regular Simple Function
Repeatability

Total 130 113 87
Depth Mismatch 2 0 0

Dimensions Mismatch 41 13 1
Bridge Placement 0 2 0

Mismatch Location 66 85 33
Mismatch Count 0 2 0
Mismatch Shape 0 1 0

Name Error 2 0 0
Value Error 11 2 0

Syntax Error 5 8 51
Not On Top Of Screw 1 0 1

Same Shape At Alternate Levels 2 0 1

(c) Detailed error analysis for the model-generated instructions

Table 6: Overview of detailed error analysis for regular boards across all the tasks

21

TEMPLATE 7.7.3

System Info

You are an expert annotator who generates sequential instructions for populating
a grid with the given shapes.

Environment Info

The environment is an 8x8 grid allowing shape placement and stacking. A shape
can be placed in any cell, while stacking involves adding multiple shapes to
the same cell, increasing its depth. Shapes typically occupy a single cell,
except for the "bridge," which spans two cells and requires two other shapes
for stacking. Horizontal bridges span adjacent columns (left and right), and
vertical ones span consecutive rows (top and bottom). Stacking is only possible
if the shapes have matching depths.

In the grid, columns align with the x-axis and rows with the y-axis. The cell
in the top-left corner is the first row and first column, corresponding to row
and column values of 1, 1. Similarly, the top-right corner cell is the first row
and eighth column, with row and column values of 1, 8.

Some of the cells in the grid are filled with shapes, and the current status of
the grid is labeled under ‘Current Grid Status’. If multiple shapes are placed
in the same cell, they are mentioned in the order from bottom to top. All the
shapes combined are referred to as an ‘object’, and the name of the object is
labeled under ‘Object Name’. Each filled cell in the grid contains a list of
tuples, where each tuple indicates the name of the shape and its color. Empty

cells are indicated by ‘ ’.

The elaboration about the grid is labeled under ’Grid Explanation’.

Task Info

Your task is to respond with the sequential instructions under the label
Instruction followed by a newline.
Generate the instructions to fill the grid with given shapes, listing all steps
in a continuous format without numbering or bullet points. Also ensure to
mention the object name in the instructions. Assume the grid starts empty and
only describe actions for placing shapes. The order of colors, x, y matters, as
these are assigned to the shapes in the same sequence.

Other Info

Do not generate any other text/explanations.
Lets begin

$CURRENT GRID STATUS

$GRID EXPLANATION

Figure 8: prompt template for probing LLM to generate instruction for simple boards

22

TEMPLATE 7.7.4

System Info

You are an expert annotator who generates sequential instructions for populating
a grid with the given shapes.

Environment Info

The environment is an 8x8 grid allowing shape placement and stacking. A shape
can be placed in any cell, while stacking involves adding multiple shapes to
the same cell, increasing its depth. Shapes typically occupy a single cell,
except for the "bridge," which spans two cells and requires two other shapes
for stacking. Horizontal bridges span adjacent columns (left and right), and
vertical ones span consecutive rows (top and bottom). Stacking is only possible
if the shapes have matching depths.

In the grid, columns align with the x-axis and rows with the y-axis. The cell
in the top-left corner is the first row and first column, corresponding to row
and column values of 1, 1. Similarly, the top-right corner cell is the first row
and eighth column, with row and column values of 1, 8.

Some of the cells in the grid are filled with objects, and the current status
of the grid is labeled under ‘Current Grid Status’. Each filled cell in the grid
contains a list of tuples, where each tuple indicates the name of the object and

its colors. Empty cells are indicated by ‘ ’.

The elaboration about the grid is labeled under ’Grid Explanation’.

Task Info

Your task is to respond with the sequential instructions under the label
Instruction followed by a newline.
Generate the instructions to fill the grid with the given object, in a continuous
format without numbering or bullet points. Assume the grid starts empty and only
describe actions for placing the object. The order of colors, x, y matters, as
these are assigned to the object in the same sequence.

Other Info

Do not generate any other text/explanations.
Lets begin

$CURRENT GRID STATUS

$GRID EXPLANATION

Figure 9: prompt template for probing LLM to generate instruction for regular boards

23

TEMPLATE 7.7.5

CURRENT GRID STATUS

CURRENT GRID STATUS varies for each of the target boards

[‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’]

[‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’]

[‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’]

[‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’]

[‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’]

[‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’]

[‘ ’, ‘ ’, [(‘washer’, ‘red’), (‘screw’, ‘blue’)], ‘ ’, ‘ ’, ‘ ’, ‘ ’,

‘ ’]

[‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’]

Object Name ‘ws’.

Grid Explanation:

Row(7), Col(3) contains red washer, blue screw.

Figure 10: Overview of grid explanation in the prompt for describing a target structure

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Ground Truth Code

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 1

Exact Match: Success
CodeBLEU: 1.0

Execution Score: Success

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for index, shape in enumerate(shapes):
 put(board, shape, colors[index], x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 2

Exact Match: Failure
CodeBLEU: 0.70

Execution Score: Success

def m5(board, colors, x, y):
 shapes = [“nut”, “screw”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 3

wrong component Exact Match: Failure
CodeBLEU: 0.95

Execution Score: Failure

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["yellow", "red"], 4, 2)

Exact Match: Failure
CodeBLEU: 0.93

Execution Score: Failure
wrong colors

World State

World State

different approach

Figure 11: Overview of evaluation measurement for the generated code; Comparison of the gener-
ated code against ground truth using the metrics Exact Match (EM), Code BLEU score (CB), and
Execution Success (ES); The ground truth code and its associated world state is shown on the left;
Four examples of generated code are measured on the right; This highlights the strict criterion of
EM, syntactic match criterion of CB and overall reconstruction accuracy of ES;

24

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Ground Truth Code Generated Code - 1

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board,shape,color,x,y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 2

match success match failure

no space

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["yellow", "red"], 4, 2)

Generated Code - 4

def m5(board, colors, x, y):
 shapes = [“nut”, “screw”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 5

match failure match failure

wrong component

wrong colors

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for index, shape in enumerate(shapes):
 put(board, shape, colors[index], x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 3

match failure

different approach

Figure 12: Overview of Exact Match measurement for the generated code; The ground truth code
and its associated world state are shown on the left. Although exact match is able to detect mis-
matches in attributes (colors and components), it fails to detect the functional correctness of code
with the same semantic logic.

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for index, shape in enumerate(shapes):
 put(board, shape, colors[index], x, y)

m5(board, ["red", "yellow"], 4, 2)

Ground Truth Code

Generated Code - 3

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board,shape,color,x,y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 2

no space

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["yellow", "red"], 4, 2)

Generated Code - 4

def m5(board, colors, x, y):
 shapes = [“nut”, “screw”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 5

wrong component

wrong colors

different approach

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 1

CB Score: 1.0

CB Score: 0.70 CB Score: 0.93 CB Score: 0.95

CB Score: 0.86

Figure 13: Overview of Code BLEU score measurement for the generated code; The ground truth
code and its associated world state are shown on the left. The Code BLEU score is able to detect
the syntactic correctness of the code (different styles), and also have high scores for the code where
the similar style is followed but uses in-correct attributes. Since the values of attributes has no
significance in Code BLEU score computation, it fails to detect mismatches in the attributes and
cannot be relied upon completely for such reconstruction tasks.

25

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for index, shape in enumerate(shapes):
 put(board, shape, colors[index], x, y)

m5(board, ["red", "yellow"], 4, 2)

Ground Truth Code

Generated Code - 4

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board,shape,color,x,y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 2

match success

match success

no space

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["yellow", "red"], 4, 2)

Generated Code - 1

def m5(board, colors, x, y):
 shapes = [“nut”, “screw”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 2

match failure match failure

wrong component

wrong colors

different approach

World State

def m5(board, colors, x, y):
 shapes = [“nut”, “washer”]
 for shape, color in zip(shapes, colors):
 put(board, shape, color, x, y)

m5(board, ["red", "yellow"], 4, 2)

Generated Code - 1

match success

Figure 14: Overview of Execution Success measurement for the generated code; The ground truth
code and its associated world state are shown on the left. Execution success compares the resultant
2D grid for its cell values (type, color and location of each component) against the ground truth grid
state. As a result, the score reflects functional correctness along with mismatches in the attributes.

System + Env + Task + Context + Other
Information …

Instruction
Place a 'ns' object in the first, fourth, and seventh columns
of the first row. Then, repeat this pattern of placement in
the remaining rows. Use only these colors: ['green', 'red']
for the 'ns' object.

Output
for row in range(8):
 for col in [0, 3, 6]:
 ns(board, colors=['green', 'red'], x=row, y=col)

Instruction
Place a 'wn' object in the first, fourth, and seventh rows of
the first column. Then, repeat this placement pattern in the
remaining columns. Use only these colors: ['blue', 'yellow']
for the 'wn' object.

Output
for row in [0, 3, 6]:
 for col in range(8):
 wn(board, colors=['blue', 'yellow'], x=row, y=col)

Instruction
Starting from the top-left corner, fill the
grid with 'ws' objects diagonally. Use only
these colors: ['blue', 'yellow'] for the 'ws'
object.

System + Env + Task + Context + Other
Information …

Instruction
Starting from the top-left corner, place the 'nbb' object in
alternating columns of the first row, each occupying a 2x2
space. Continue until there's insufficient space at the
grid's end for a full object. Then, repeat this pattern in
alternating rows. Use only these colors: ['yellow', 'yellow',
'green'] for the 'nbb' object.

Output
for row in range(0, 8, 3):
 for col in range(0, 8, 3):
 nbb(board, colors=['yellow', 'yellow', 'green'],
 x=row, y=col)

Instruction
Fill the first column with the 'bns' object, each occupying a
2x1 space. Continue until there's insufficient space at the
grid's end for a full object. Then repeat this action in every
alternate column. Use only these colors: ['red', 'yellow',
'red'] for the 'bns' object.

Output
for row in range(0, 8, 2):
 for col in range(0, 8, 2):
 bns(board, colors=['red', 'yellow', 'red'],x=row, y=col)

Instruction
Start from the top-left corner and
diagonally place 'nwb' objects, each taking
a 2x1 space. Continue until there's
insufficient space at the grid's end for a full
object. Use only these colors: ['green',
'green', 'yellow'] for the 'nwb' object.

In
-C

on
te

xt
 S

am
pl

es
Te

st

In
st

ru
ct

io
n

(ii) Function Repeatability (Complex Objects)

Pr
om

pt

H
ea

de
r

(i) Function Repeatability (Simple Objects)

Figure 15: In-context samples for regular boards.

26

{%- if instruction_index == 0 -%}
These are the step -by -step instructions to build {{ data.

↪→ combo_name }}.{{ " " }}
{%- endif -%}
{%- if orientation -%}
place a {{ color }} {{ shape }} {{ orientation }}ly in the {{ x }}

↪→ row , {{ y }} column
{%- else -%}
place a {{ color }} {{ shape }} in the {{ x }} row , {{ y }} column
{%- endif -%}

(a) Multi-turn Instruction template

These are the instructions to build {{ data.combo_name }}.{{ " "
↪→ }}

{%- for i in range(data.shapes|length) -%}
Place a {{ data.colors[i] }} {{ data.shapes[i] }} {%- if data.

↪→ orientations[i] %} {{ data.orientations[i] }}ly {%- endif %}
↪→ in the {{ x[i] }} row , {{ y[i] }} column .{% if not loop.
↪→ last %} {% endif %}

{%- endfor -%}

(b) Single-turn Instruction template

Figure 16: Jinja2 templates for generating multi-turn and single-turn instructions for simple boards.
Top: Defines the template grammar used for atomic placement of a component in each turn. Bottom:
Defines the template grammar used for multiple component arrangement in a sequence.

27

Place a ’{{ combo_name }}’ object in the first , fourth , and seventh
↪→ columns of the first row. Then , repeat this pattern of
↪→ placement in the remaining rows. Use only these colors: {{
↪→ colors }} for the ’{{ combo_name }}’ object.

(a) arrangement-1

Place a ’{{ combo_name }}’ object in the first , fourth , and seventh
↪→ rows of the first column. Then , repeat this placement
↪→ pattern in the remaining columns. Use only these colors: {{
↪→ colors }} for the ’{{ combo_name }}’ object.

(b) arrangement-2

Starting from the top -left corner , fill the grid with ’{{
↪→ combo_name }}’ objects diagonally. Use only these colors:
↪→ {{ colors }} for the ’{{ combo_name }}’ object.

(c) arrangement-3

Place a ’{{ combo_name }}’ object at all the corners of the grid.
↪→ Use only these colors: {{ colors }} for the ’{{ combo_name
↪→ }}’ object.

(d) arrangement-4

Place a ’{{ combo_name }}’ object in the first , and fifth columns of
↪→ the first row. Then , repeat this placement pattern in the
↪→ fifth row. Use only these colors: {{ colors }} for the ’{{
↪→ combo_name }}’ object.

(e) arrangement-5

Figure 17: Jinja2 templates for the construction of simple objects in regular boards. Each template
grammar refers to a particular sequence arrangement.

28

Start from the top -left corner and diagonally place ’{{ combo_name
↪→ }}’ objects , each taking a {{ occupied_rows }}x{{
↪→ occupied_columns }} space. Continue until there ’s
↪→ insufficient space at the grid ’s end for a full object. Use
↪→ only these colors: {{ colors }} for the ’{{ combo_name }}’
↪→ object.

(a) arrangement-1

Starting from the top -left corner , place the ’{{ combo_name }}’
↪→ object in alternating columns of the first row , each
↪→ occupying a {{ occupied_rows }}x{{ occupied_columns }} space
↪→ . Continue until there ’s insufficient space at the grid ’s
↪→ end for a full object. Then , repeat this pattern in
↪→ alternating rows. Use only these colors: {{ colors }} for
↪→ the ’{{ combo_name }}’ object.

(b) arrangement-2

Fill the first column with the ’{{ combo_name }}’ object , each
↪→ occupying a {{ occupied_rows }}x{{ occupied_columns }} space
↪→ . Continue until there ’s insufficient space at the grid ’s
↪→ end for a full object. Then repeat this action in every
↪→ alternate column. Use only these colors: {{ colors }} for
↪→ the ’{{ combo_name }}’ object.

(c) arrangement-3

Fill the fourth column with the ’{{ combo_name }}’ object , each
↪→ occupying a {{ occupied_rows }}x{{ occupied_columns }} space
↪→ . Continue until there ’s insufficient space at the grid ’s
↪→ end for a full object. Use only these colors: {{ colors }}
↪→ for the ’{{ combo_name }}’ object.

(d) arrangement-4

Figure 18: Jinja2 templates for the construction of complex objects in regular boards.

29

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’]
for shape , color in zip(shapes , colors):

put(board , shape , color , x, y)

(a) Stack two shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’{{ shapes [2]

↪→ }}’]
for shape , color in zip(shapes , colors):

put(board , shape , color , x, y)

(b) Stack three shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’bridge -h’]
for shape , color , dx , dy in zip(shapes , colors , [0, 0, 0], [0,

↪→ 1, 0]):
put(board , shape , color , x + dx , y + dy)

(c) Place two shapes adjacently on a row and stack a horizontal bridge on top of them

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’bridge -v’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 0], [0,

↪→ 0, 0]):
put(board , shape , color , x + dx , y + dy)

(d) Place two shapes vertically in a column and stack a vertical bridge on top of them

Figure 19: Jinja2 templates for the code generation for the component arrangements

30

def {{ combo_name }}(board , colors , x, y):
shapes = [’bridge -h’, ’{{ shapes [1] }}’, ’{{ shapes [2] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 0, 0], [0,

↪→ 1, 1]):
put(board , shape , color , x + dx , y + dy)

(a) Place a horizontal bridge and stack two shapes on its right side

def {{ combo_name }}(board , colors , x, y):
shapes = [’bridge -v’, ’{{ shapes [1] }}’, ’{{ shapes [2] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 1], [0,

↪→ 0, 0]):
put(board , shape , color , x + dx , y + dy)

(b) Place a vertical bridge and stack two shapes on the bottom side of it

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’{{ shapes [2]

↪→ }}’, ’{{ shapes [3] }}’]
for shape , color in zip(shapes , colors):

put(board , shape , color , x, y)

(c) Stack four shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’bridge -h’,

↪→ ’{{ shapes [3] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 0, 0, 0],

↪→ [0, 1, 0, 0]):
put(board , shape , color , x + dx , y + dy)

(d) Place two shapes side by side on a row, then stack a horizontal bridge and an additional shape on top of
these two shapes

Figure 20: Jinja2 templates for the code generation for the component arrangements

31

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’bridge -h’,

↪→ ’{{ shapes [3] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 0, 0, 0],

↪→ [0, 1, 0, 1]):
put(board , shape , color , x + dx , y + dy)

(a) Place two shapes adjacently on a row and stack a horizontal bridge along with a fourth shape on top of these
two shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’bridge -v’,

↪→ ’{{ shapes [3] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 0, 0],

↪→ [0, 0, 0, 0]):
put(board , shape , color , x + dx , y + dy)

(b) Place two shapes vertically in a column and stack a vertical bridge and an additional shape on top of these
two shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’bridge -v’,

↪→ ’{{ shapes [3] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 0, 1],

↪→ [0, 0, 0, 0]):
put(board , shape , color , x + dx , y + dy)

(c) Place two shapes vertically in a column and stack a vertical bridge along with a fourth shape on top of these
two shapes

Figure 21: Jinja2 templates for the code generation for the component arrangements

32

def {{ combo_name }}(board , colors , x, y):
shapes = [’bridge -h’, ’{{ shapes [1] }}’, ’bridge -v’, ’{{

↪→ shapes [3] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 0, 0],

↪→ [0, 1, 1, 1]):
put(board , shape , color , x + dx , y + dy)

(a) Placement and stacking of a combination that includes a horizontal bridge, a vertical bridge, and two other
shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’bridge -v’, ’{{ shapes [1] }}’, ’bridge -h’, ’{{

↪→ shapes [3] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 1, 1],

↪→ [0, 1, 0, 0]):
put(board , shape , color , x + dx , y + dy)

(b) Placement and stacking of a combination that includes a vertical bridge, a horizontal bridge, and two other
shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’bridge -h’, ’bridge -h’, ’bridge -v’, ’bridge -v’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 0, 0],

↪→ [0, 0, 0, 1]):
put(board , shape , color , x + dx , y + dy)

(c) Placement and stacking of combinations of horizontal and vertical bridges

def {{ combo_name }}(board , colors , x, y):
shapes = [’bridge -v’, ’bridge -v’, ’bridge -h’, ’bridge -h’]
for shape , color , dx , dy in zip(shapes , colors , [0, 0, 0, 1],

↪→ [0, 1, 0, 0]):
put(board , shape , color , x + dx , y + dy)

(d) Placement and stacking of combinations of vertical and horizontal bridges

Figure 22: Jinja2 templates for the code generation for the component arrangements

33

def {{ combo_name }}(board , colors , x, y):
shapes = [’bridge -h’, ’{{ shapes [1] }}’, ’bridge -v’, ’{{

↪→ shapes [3] }}’, ’{{ shapes [4] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 0, 0,

↪→ 0], [0, 1, 1, 1, 1]):
put(board , shape , color , x + dx , y + dy)

(a) Placement and Stacking of horizontal bridge, vertical bridge and a combination of two other shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’bridge -h’,

↪→ ’{{ shapes [3] }}’, ’{{ shapes [4] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 0, 0, 0,

↪→ 0], [0, 1, 0, 0, 0]):
put(board , shape , color , x + dx , y + dy)

(b) Place two shapes adjacently on a row and stack a horizontal bridge along with two other shapes on top of
these two shapes

def {{ combo_name }}(board , colors , x, y):
shapes = [’{{ shapes [0] }}’, ’{{ shapes [1] }}’, ’bridge -v’,

↪→ ’{{ shapes [3] }}’, ’{{ shapes [4] }}’]
for shape , color , dx , dy in zip(shapes , colors , [0, 1, 0, 0,

↪→ 0], [0, 0, 0, 0, 0]):
put(board , shape , color , x + dx , y + dy)

(c) Place two shapes vertically in a row and stack a vertical bridge along with two additional shapes on top of
these two shapes

for row in range ({{ num_rows }}):
for col in [0, 3, 6]:

{{ combo_name }}(board , colors ={{ colors }},x=row , y=col)

(d) Repeat a simple object in the first, fourth, and seventh columns across all the rows in the grid

Figure 23: Jinja2 templates for the code generation for the component arrangements

34

for row in [0, 3, 6]:
for col in range ({{ num_cols }}):

{{ combo_name }}(board , colors ={{ colors }},x=row , y=col)

(a) Repeat a simple object in the first, fourth, and seventh rows across all columns of the grid

for row in range ({{ num_rows }}):
for col in range ({{ num_cols }}):

if row == col:
{{ combo_name }}(board , colors ={{ colors }},x=row , y=

↪→ col)

(b) Fill the grid by placing a simple object along the diagonal

for row , col in [[0,0], [0,{{ num_cols -1 }}], [{{ num_rows -1 }},
↪→ 0], [{{ num_rows -1 }}, {{ num_cols -1 }}]]:
{{ combo_name }}(board , colors ={{ colors }}, x=row , y=col)

(c) Place a simple object at all the corners of the grid

for row in [0, 4]:
for col in [0, 4]:

{{ combo_name }}(board , colors ={{ colors }}, x=row , y=col)

(d) Fill the entire fourth column and the entire fourth row of the grid with a simple object

Figure 24: Jinja2 templates for the code generation for the component arrangements

35

for row in range(0, {{ num_rows }}, {{ 2+min_rows -1 }}):
for col in range(0, {{ num_cols }}, {{ 2+min_cols -1 }}):

{{ combo_name }}(board , colors ={{ colors }},x=row , y=col)

(a) Place a complex object in alternating columns of the first row, and replicate this pattern in alternating rows
throughout the grid.

for row in range(0, {{ num_rows }}, {{ min_rows }}):
for col in range(0, {{ num_cols }}, {{ 2+min_cols -1 }}):

{{ combo_name }}(board , colors ={{ colors }},x=row , y=col)

(b) Place a complex object in alternating rows of the first column. Apply this pattern to alternating columns
across the grid

for row in range(0, {{ num_rows }}, {{ min_rows }}):
{{ combo_name }}(board , colors ={{ colors }}, x=row , y=3)

(c) Repeat a complex object in the fourth column of the grid

Figure 25: Jinja2 templates for the code generation for the component arrangements

36

	Introduction
	Related Work
	Simulating Industry-Style Assembly with 2D Building Tasks
	Target Structure Generation
	Instruction Generation

	Experimental Setup: From Language to Robot Programs
	Setup
	Evaluation Metrics

	Results and Analysis
	 Conclusion and Limitations
	Appendix
	Simulated Environment
	Template-Based Instructions
	Human-Written Instructions
	Model-Generated Instructions
	Prompt Structure
	Ablation Study
	Selection of In-context Samples

	Detailed Error Analysis
	Evaluation Metrics

