arXiv:2505.14425v2 [cs.CL] 18 Aug 2025

From Templates to Natural Language: Generalization Challenges in
Instruction-Tuned LLMs for Spatial Reasoning

Chalamalasetti Kranti'!, Sherzod Hakimov!, David Schlangen'?
LComputational Linguistics, Department of Linguistics
University of Potsdam, Germany
2German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
{kranti.chalamalasetti, sherzod.hakimov, david.schlangen}@uni-potsdam.de

Abstract

Instruction-tuned large language models
(LLMs) have shown strong performance on a
variety of tasks; however, generalizing from
synthetic to human-authored instructions in
grounded environments remains a challenge
for them. In this work, we study generalization
challenges in spatial grounding tasks where
models interpret and translate instructions
for building object arrangements on a 2.5D
grid. We fine-tune LLMs using only synthetic
instructions and evaluate their performance on
a benchmark dataset containing both synthetic
and human-authored instructions. Our results
reveal that while models generalize well on
simple tasks, their performance degrades
significantly on more complex tasks. We
present a detailed error analysis of the gaps in
instruction generalization.

1 Introduction

Accurate spatial grounding (Green et al., 2006;
Brenner, 2007) is important for effective human-
robot interaction (Bisk et al., 2016; Shridhar and
Hsu, 2018; Hatori et al., 2018). It involves the robot
interpreting spatial references (Hiittenrauch et al.,
2006) and relational cues expressed in natural lan-
guage instructions (Dang-Vu et al., 2015; Paul et al.,
2018; Tellex et al., 2020; Bisk et al., 2020). Large
Language Models (LLMs) are increasingly used in
robotics pipelines (Ichter et al., 2022; Wang et al.,
2024b; Lim et al., 2024; Macaluso et al., 2024) to
translate such instructions into high-level plans and
then into low-level robot actions. While these mod-
els have shown progress in instruction-following
tasks, they continue to face challenges (Liu et al.,
2023; Ding et al., 2023; Jiang et al., 2025) when
grounding spatial language references.

Human instructions are often abstract (Minsky,
1980), underspecified (Hendriks et al., 2014), and
context-dependent. For example, a user might say
“put the red block on top of that blue one” in one

Synthetic Code-Instruct Fine-Tuned
Instructions LLM _’ LLM

Synthetic Human
Instructions (SI) Instructions (HI)

i N |

Ground Truth Fine-Tuned o arin
round Tru LLM round Trul
LLM Output (SI) LLM Output (HI)
v o] [ o [ V|

Figure 1: Fine-tuned LLMs trained on synthetic instruc-
tions are evaluated on both synthetic (SI) and human
(HI) instructions. A virtual simulator verifies whether
generated response matches the gold configuration.

case, and “make a staircase” in another. These
variations rely on shared context and conceptual
inference, making them harder to interpret (Kranti
et al., 2024a; Chaturvedi et al., 2024) than synthetic
or templated instructions, which are designed to be
direct and explicit.

To explore these issues in a controlled setting,
we investigate them in the context of a structure-
building task, where instructions guide the manipu-
lation of objects on a grid. We leverage an existing
dataset (Kranti et al., 2024b) that includes both
synthetic and human-authored instructions for the
same grounded spatial reasoning task. Each task
involves building specific arrangements of colored
shapes on an 2.5D grid with size 8 x 8, referred to
as “boards.” Each board is paired with both syn-
thetic and human-authored instructions, enabling
direct comparison of model behavior (see Figure 1)
across instruction styles within a shared task space.

We evaluate how well pre-trained LLMs perform
with both synthetic and human-authored instruc-
tions across different board types. Furthermore, we


https://arxiv.org/abs/2505.14425v2

fine-tune instruction-tuned LL.Ms using only the
synthetic instructions and evaluate them whether
they generalize to human-authored ones. Our re-
sults show that while fine-tuning improves model
performance, and models achieve high execution
scores on simple boards, performance gains are
limited on regular boards. This suggests that in-
struction generalization is closely tied to the com-
positional and structural complexity of the task, and
that fine-tuning solely on synthetic data is insuffi-
cient for robust transfer to instructions that require
more abstract or relational understanding.

Our contributions are as follows: (a) we evaluate
pre-trained and fine-tuned LLMs on both synthetic
and human-authored instructions, and report quan-
titative performance across different board types
(simple vs. regular); (b) we conduct a detailed qual-
itative analysis of model responses before and after
fine-tuning, categorizing the types of errors across
instruction styles and board complexity; (c) we an-
alyze the embedding similarity of human-authored
instructions, to their synthetic counterparts, the
number of shapes involved, and how these factors
correlate with model performance; and (d) we test
the generalization of fine-tuned models on two re-
lated, out-of-domain code generation tasks, and
report the performance related to the generaliza-
tion.

2 Related Work

Spatial Grounding with LLMs Spatial ground-
ing refers to the task of interpreting spatial ref-
erences in natural language and linking them to
a target environment. Recent work has explored
the use of LLMs for tasks such as block manip-
ulation (Valmeekam et al., 2023; Goldberg et al.,
2024), table setting (Liang et al., 2023; Vemprala
etal., 2024), tool usage (Xu et al., 2023) and collab-
orative assembly (Lim et al., 2024; Macaluso et al.,
2024; Joglekar et al., 2024). Our work is inspired
by these efforts but differs in how the grounding is
performed. Prior approaches generate sequences of
atomic actions or low-level code that are directly ex-
ecutable in the environment. In contrast, we focus
on generating abstract functions that encode spa-
tial semantics but are not immediately grounded;
these functions are interpreted and executed by a
downstream system. This abstraction allows us to
analyze how well LLMs encode spatial structure
independently of immediate action execution.

Instruction-to-Code Translation for Spatial
Tasks Instruction-to-code translation focuses on
converting natural language inputs into executable
programs or structured representations (Singh et al.,
2023; Huang et al., 2023a,b; Wang et al., 2024a;
Hu et al., 2024). Our work extends these efforts by
comparing model performance across two instruc-
tion styles, synthetic and human-authored, for the
same spatial task. This setup enables us to study
generalization and instruction-following behavior
under consistent task conditions.

Generalization from Synthetic to Human In-
struction Instruction-tuned models often strug-
gle to generalize well from synthetic to natural lan-
guage (Li et al., 2023; Nwankwo et al., 2025; Shi
et al., 2025; Nadas et al., 2025). This reflects the
challenges of handling variation in human-authored
instructions. We extend this to a spatial grounding
task and report similar failures in generalization
despite high performance on synthetic tasks.

Fine-tuning on Synthetic vs. Human Instruc-
tions Prior work has explored fine-tuning LLMs
for collaborative structure building in environments
like MINECRAFT (Kranti et al., 2024a; Chaturvedi
et al., 2024). These studies typically fine-tune on a
mix of synthetic and human-authored instructions
and report limited generalization. Furthermore,
MINECRAFT dataset (Narayan-Chen et al., 2019)
does not distinguish based on complexity and struc-
tures with and without object repetitions, making
it difficult to isolate the impact of fine-tuning. Our
work builds on these by analyzing performance
gaps across instruction styles and board types that
affect generalization.

3 Task Formulation and Datasets

Task: it is framed as a two-player game between
a programmer and a cobot (collaborative robot),
where there is no intermediate feedback and execu-
tion happens only at the end of the interaction. The
programmer (instruction giver) is given a target
board and instructs the cobot (instruction follower)
to translate the instruction into code. The code
generated by the cobot is executed in a virtual sim-
ulation environment and evaluated for correctness.

Boards: We use the SARTCo (Kranti et al.,
2024b) dataset for finetuning and the main testbed
for our experiments. It consists of 260 human-
authored instructions for a structure building task



Code Representation
def bwbs(board, colors, X, y):
shapes = ['bridge-h', 'washer",
'bridge-Vv', 'screw']
for shape, color, dx, dy in zip(shapes,
colors, [0, 1, 0, 0], [0, 1, 1, 1]):
put(board, shape, color, x + dx, y + dy)

Target Structure

3

bwbs(board, ('red, 'blue’, 'yellow','green’),
x=0, y=0)

T Z 3 4 5 6 7 8

Code Representation
def nbb(board, colors, X, y):
shapes = ['nut', 'bridge-V', 'bridge-h']
for shape, color, dx, dy in zip(shapes,
colors, [0, 0, 0], [0, 1, 0]):
put(board, shape, color, x + dx, y + dy)

Target Structure

5 =
-

T 2 3 4 5 6 7

for row in [0, 4]:
for col in [0, 4]:
nbb(board, colors=[‘red’, ‘blue’,
‘green’], x=row, y=col)

Synthetic Instruction
Place a red bridge horizontally in
the 1st row, 1st column. Place a
blue washer in the 2nd row, 2nd
column. Place a yellow bridge

Human-Authored Instruction

Place a red horizontal bridge in the 1st
row, 1st column. Add a blue washer
below the right side of the bridge. Stack
a yellow vertical bridge on top of the

Synthetic Instruction
Place a 'nbb' object in the first, and
fifth columns of the first row. Then,
repeat this placement pattern in the
fifth row. Use only these colors:
['red’, 'blue', 'green’] for the 'nbb’

Human-Authored Instruction
Put a nbb object in the top left corner. The
nut is red and the horizontal bridge on top
is green. The vertical bridge is blue. Place
another nbb object in the same colors in
the same row, in column 5. Add two more

right side of the birdge and the washer.
Stack a blue screw on top of the upper
part of the yellow bridge

vertically in the 1st row, 2nd
column. Place a green screw in the
1st row, 2nd column.

Figure 2: A simple board example showing how code
(left) maps to a target structure (right), with both syn-
thetic and human-authored instructions describing the
same configuration. Models are expected to generate
both the function definition and its usage based on the
given instruction.

on a 2.5D ! grid. Each instance in the dataset in-
cludes a triplet: a code representation, a target
board, and a natural language instruction. An ex-
ample consisting of the target board, an abstract
Python function, and two styles of instructions, is
shown in Figure 2 and Figure 3. Each target board
is a specific arrangement of objects on a grid. An
object is a composition of shapes such as washers,
screws, nuts, and bridges. Boards are labeled as
either simple, with non-repetitive arrangements, or
regular, with repetitive arrangements. The goal
is to generate this semantically grounded function
from the instruction. This setup reflects instruction-
following scenarios and enables evaluation of how
well LLMs can spatially ground such instructions.

Instructions: they are of two types: synthetic &
Human-authored. Synthetic instructions are gen-
erated using a template-based grammar. They are
structurally consistent and semantically explicit.
They are available in both single-turn and multi-
turn formats. Human-authored instructions are free-
form language inputs for the same target structure.
They are available only in single-turn format. Both
types are aligned to the same structure building
task.

Learning on Synthetic Instructions: we
prompt LLMs with both instruction types and eval-
uate the performance by executing the generated
code in a virtual simulation. The output is com-
pared to the target to compute execution success,

'A 2D grid with stacking support in each cell and without
the complexity of full 3D simulation.

nbb objects in the same colors in row 5, in
the same two columns as the first two
objects.

object.

Figure 3: A regular board example illustrating repeated
structural patterns defined by code (left), their corre-
sponding target structure (right), and matching synthetic
and human-authored instructions. The function defini-
tion is provided in the prompt; models are expected to
generate only the usage code (e.g., nested for loops)
based on the instruction.

defined as the proportion of cases where the model
output matches the target board. We fine-tune mod-
els on synthetic instructions and evaluate them on
both synthetic and human-authored instructions.
This setup tests how well models generalize from
synthetic to human language in the same task do-
main.

Cross-domain Datasets: We also eval-
uate cross-domain generalization using the
HEXAGONS (Lachmy et al., 2022) and TIDY-
BoT (Wu et al., 2023) datasets. These datasets
help assessing whether fine-tuned models are able
to perform on different but related spatial instruc-
tion tasks.

4 Experimental Setup

We evaluate a diverse set of LLMs with varying
sizes and architectures, focusing on their ability
to interpret grounded spatial instructions and gen-
erate executable action sequences. These mod-
els are used as-is (few-shot) and fine-tuned on
synthetic data only, without exposure to human-
authored instructions during training. We use the
clembench (Chalamalasetti et al., 2023) framework
to manage player interactions.

4.1 Evaluated Models & Parameters

Models: We include both code-centric models
(QWEN2.5-CODER-7B, 32B) and general-purpose,
instruction-following models (QWEN3-8B, 32B;
LLAMA-3.1-8B, 3.3-70B). All models are loaded



in 4-bit quantized precision using the UNSLOTH li-
brary?. We compared these models against the com-
mercial ones: GPT-40 and CLAUDE-4-SONNET.

Fine-Tuning Details: Models are fine-tuned on
synthetic instruction—code pairs, where the input
is a synthetic natural language instruction and the
output is the corresponding Python code represen-
tation of the board. The training set (Kranti et al.,
2024b) comprises a mixture of simple boards (1072
boards) and regular boards (1168 boards). We
adopt a chat-style prompt format, including con-
text and environment details (more details in Ap-
pendix A.1), followed by the instruction and target
code. We use the QLORA configuration provided
by UNSLOTH with the following hyperparameters:
3 epochs, 20 steps, adam-8bit optimizer, rank
16, lora_alpha=16, lora_dropout=0.10,
batch size=8, and learning rate=1e—4.

Hyperparameter Selection and Ablations: To
determine optimal fine-tuning settings, we con-
ducted a comprehensive ablation study varying
data composition, ordering, and hyperparameters.
We evaluated models trained on (i) only simple
boards, (ii) only regular boards, and (iii) com-
bined boards with/without shuffling. Additionally,
we explored the impact of training sample sizes
(100-t0-1000 per board type), batch sizes (2-to-8),
learning rates (le—4, 2e—4), epoch counts (1-to-5),
lora_dropout (0.10, 0.15, 0.20) and early stop-
ping patience(2, 3). These studies informed our
final configuration: combined dataset with shuffled
samples, full training set, batch size 8, 3 epochs,
learning rate le—4, and dropout 0.10. More de-
tails and ablation study results are available in Ap-
pendix A.3.1.

r =

4.2 Evaluation Metrics

We assess model performance on instruction-
following capability, execution accuracy, and cross-
domain robustness.

Error Rate: A metric capturing instruction ad-
herence based on predefined response constraints
(output formatting) in the prompt (Appendix A.1).
In the clembench setup, responses that violate these
constraints are marked as abort.

Execution Success Rate: Our primary task suc-
cess metric. Each model-generated function is exe-
cuted in a virtual simulator and compared against
the target board (an 8 x 8 grid with shape type,

Zhttps://unsloth.ai/

color, position, and stacking order). A prediction is
successful if the resulting board configuration ex-
actly matches the ground truth in component type,
color, spatial placement, and stacking sequence.

Human Baseline: To contextualize model per-
formance, we include a human-generated baseline.
We developed a simple user interface (see Figure 10
in Appendix) that shows the human-authored in-
structions (by a different annotator) on the left and
the setup to reconstruct the target board on the right.
We hired an annotator and asked to reconstruct tar-
get boards. These outputs were executed using the
same virtual simulator and computed the same Ex-
ecution Success Rate metric, allowing direct com-
parison between model and human performance.

Cross-domain robustness: We measure gener-
alization by comparing model performance before
and after fine-tuning. Specifically, we evaluate
whether models trained on synthetic instructions
generalize to (1) human-authored instructions in
the same task domain (structure building: syn-
thetic — human), and (2) structurally similar but
domain-shifted tasks such as drawing hexagons
(HEXAGONS) and sorting objects (TIDYBOT).

5 Results

We present quantitative and qualitative results, fol-
lowed by cross-domain generalization analysis.
Quantitative results are organized first by board
type (simple and regular) for human-authored in-
structions, and then by instruction type (synthetic
and human-authored) for overall comparison.

5.1 Quantitative Analysis

Performance based on Board Type Table 1
presents model accuracy on simple and reg-
ular boards for human-authored instructions.
Most models perform better on simple boards.
Llama3.3-70B and Qwen2.5-Coder-32B achieve
higher scores of 0.69 and 0.68, respectively. While
the scores also improve for regular boards, the
gains are smaller. Qwen2.5-Coder-32B achieves
0.54 accuracy. LLaMA3.1-8B and Qwen3-8B have
lower scores, primarily due to hallucinations or fail-
ure to follow the expected response format, result-
ing in aborted executions (see abort rate in Table 1).
Although fine-tuning improves accuracy, the gap
with the human upper bound remains substantial.
Smaller models (L1ama3.1-8B, Qwen3-8B) per-
form better on regular boards than on simple boards.


https://unsloth.ai/

Abort Rate |

Performance 1

Model SB RB SB RB
Before After Before After | Before After Before After
Qwen2.5-Coder-7B 0.00 0.00 1.00 0.00 0.07 0.40 0.07 0.35
Llama3.1-8B 0.00 0.11 0.00 0.09 0.00 0.08 0.00 0.21
Qwen3-8B 1.00 0.38 0.95 0.59 0.00 0.09 0.00 0.12
Qwen2.5-Coder-32B  0.00 0.00 0.00 0.00 0.14 068 0.23 0.54
Qwen3-32B 0.95 0.00 0.97 0.00 0.00 0.53 0.00 0.38
Llama3.3-70B 0.00 0.00 0.72 0.06 0.11 0.69 0.07 0.33
GPT-40 0.00 — 0.00 — 0.72 — 0.55 —
Claude-4(sonnet) 0.00 — 0.00 — 0.88 — 0.60 —
Human-Baseline — — - — 0.98 0.76

Table 1: Abort rate and task performance (accuracy) on simple boards (SB) and regular boards (RB) from human-
authored set, before and after fine-tuning on the synthetic set. While some models show gains on SB, improvements

on RB are low.

FSG FSC
Model SB RB SB RB
Qwen2.5-Coder-7B 0.25 0.25 0.23 0.19
Llama3.1-88B 0.02 028 011 029
Qwen3-8B 0.05 0.10 0.05 0.29
Qwen2.5-Coder-32B  0.45 0.53 0.32 0.51
Qwen3-32B 0.35 024 042 0.54
L1lama3.3-70B 054 032 055 0.15

Table 2: Model performance with RB prompt styles
(FSG: Function Signature, FSC: Function Schematic),
evaluated on SB (simple) and RB (regular) boards.

FSG FSC
Model SB RB SB RB
Qwen2.5-Coder-7B 0.00 0.00 0.23 0.19
Llama3.1-8B 0.01 0.00 0.31 0.00
Qwen3-8B 0.65 0.51 0.55 0.02
Qwen2.5-Coder-32B  0.00 0.00 0.00 0.00
Qwen3-32B 0.00 0.00 0.01 0.00
Llama3.3-70B 0.00 0.00 0.00 0.52

Table 3: Effect of RB prompt styles (FSG: Function
Signature, FSC: Function Schematic) on abort rates for
SB (simple) and RB (regular) boards.

This may be due to differences in the expected out-
put structure. For regular boards, the target code
typically consists of nested for loops that repeat
the same object placement across multiple loca-
tions (see Figure 3). In contrast, simple boards of-
ten require placing a sequence of different shapes
with precise spatial relationships, typically imple-
mented using abstract function definitions. This
output structure appears to be harder for these mod-
els to generate reliably.

Effect of prompt variation Additional experi-
ments were conducted using different prompt styles
for regular boards. Table 2 shows results from

SB RB
Model ST HA ST HA
Qwen2.5-Coder-7B 098 040 1.00 0.35
Llama3.1-8B 046 0.08 0.75 021
Qwen3-8B 071 0.09 065 0.12
Qwen2.5-Coder-32B 098 0.68 1.00 0.54
Qwen3-32B 099 0,53 1.00 0.38
Llama3.3-70B 098 0.68 1.00 0.33
GPT-40 078 0.72 0.64 0.55
Claude-4 095 0.88 098 0.60
Human-Baseline 0.98 0.76

Table 4: Performance by instruction type: ST (synthetic)
and HA (human-authored) on SB (simple) and RB (reg-
ular) boards.

two styles: Function Signature (FSG), which in-
cludes only the function signature in the prompt,
and Function Schematic (FSC), which includes the
signature along with a brief schematic description
of the function (see Appendix A.2 for more de-
tails). These prompt variations do not significantly
affect performance on regular boards, but they re-
duce performance on simple boards. For exam-
ple, Qwen2.5-Coder-32B drops from 0.68 to 0.45
(FSG) and 0.32 (FSC), while LLaMA3-7@B drops
from 0.69 to 0.54 (FSG) and 0.55 (FSC). These
results suggest that while FSG and FSC are suf-
ficient to support symbolic reuse (as in regular
boards), they are less effective when the model
is required to generate symbolic abstractions, as in
simple boards.

Few-shot prompting We also experimented with
few-shot prompting using the fine-tuned models.
Table 7 (in Appendix A.2.1) shows that few-shot
prompting improves Qwen2.5-Coder-32B’s score
on simple boards to 0.82, but causes a slight de-
crease in RB performance, from 0.54 to 0.51.



Place a green washer in the
bottom left corner. Add a yellow
washer next to it to the right.
Stack a red horizontal bridge on
top of the two washers.

Input Instruction ﬁ' Ground Truth ﬁ'

wwhb(board, ('green’, 'yellow', 'red'), 7, 0) E

Llama3.1-8B Llama3.3-70B

def wwb(board, colors, X, y):
shapes = ['washer', ‘washer, 'bridge-h']
for shape, color, dx, dy in zip(shapes,
colors,[0, 1, 0], [0, 0, 0]):
put(board, shape, color, x+dx, y+dy)

def wwb(board, colors, X, y):
shapes = ['washer', 'washer, 'bridge-h']
for shape, color, dx, dy in zip(shapes,
colors,[0, 0, 0], [0, 1, 0]):
put(board, shape, color, x+dx, y+dy)

wwb(board, (‘green’, 'yellow', 'red'), x, v) wwb(board, (‘green’, 'yellow', 'red'), 1, 0)

Execution Output Q

[
[

wwhb(board, (‘green’, 'yellow', 'red’), x, y)
NameError: name X' is not defined

o o

def wwb(board, colors, x, y):
shapes = ['washer', 'washer, 'bridge-h"]
for shape, color, dx, dy in zip(shapes, colors,[0, 0, 0],
[0, 1, 0]):
put(board, shape, color, x + dx, y + dy)

def wwb(board, colors, x, y):

shapes = ['washer’, 'washer’, 'bridge-h']

for shape, color, dx, dy in zip(shapes,
put(board, shape, color, x+dx, y+dy)

wwb(board, (‘green’, 'yellow', 'red'), 0, 0)

DepthMismatchError: Placement not
possible

Target Board ﬁ'

Qwen2.5-7B Qwen3-8B Qwen2.5-32B, Qwen3-32B

def wwb(board, colors, x, y):
shapes = ['washer’, 'washer', 'bridge-h']
for shape, color, dx, dy in zip(shapes,
colors, [0, 0, 0], [0, 1, O]):
put(board, shape, color, x+dx, y+dy)

oven

colors, [0, 1, 0], [0, 0, 0]):

wwb(board, (‘green’, 'yellow', 'red'), 7, 0)

The game has
been aborted due
to an invalid input.

© © 2

Figure 4: Execution analysis of different models on an instruction-to-code generation task. Given a natural language
instruction (top left), only Qwen2.5-32B and Qwen3-32B generate correct and executable code that replicates the
target board (top right). Other models fail due to issues such as undefined variables, incorrect coordinates, or invalid

placements.

Performance based on Instruction Type We
compare model performance on synthetic and
human-authored instructions to quantify the gen-
eralization gap. Table 4 shows that while mod-
els achieve high accuracy on synthetic instruc-
tions, performance drops significantly on human-
authored inputs. This discrepancy highlights the
challenge of transferring symbolic reasoning skills
to more abstract and natural instruction styles.

The improved regular board performance seen
in L1ama3. 1-8B, Qwen3-8B may stem from the rel-
ative simplicity of generating repetitive structure,
particularly when trained on synthetic instructions
that explicitly describe iteration patterns.

Overall, fine-tuning on synthetic data improves
performance on regular boards across all models.
For simple boards, the impact is varied: some mod-
els, particularly instruction-tuned or code-oriented
ones, benefit substantially, while others show little
improvement due to format violations and halluci-
nations. These findings indicate that even a small
amount of synthetic supervision can be beneficial,
but the downstream effects depend on model align-
ment, size, and prompt structure.

5.2 Qualitative Analysis

Figure 4 presents a qualitative comparison of model
predictions for a human-authored instruction. The
instruction requires placing a green washer in
the bottom left corner of a grid, adding a yellow

washer next to it on the right, and stacking a red
horizontal bridge on top of the two washers. The
corresponding ground truth code places the shapes
starting from (7, 0) using relative spatial offsets.

Qwen2.5-32B and Qwen3-32B generated code
that exactly matched the target representation.
These models correctly interpreted the spatial refer-
ence: bottom left as (7, 0), maintained the ordering
of shape placements, and generated a semantically
translated abstract function.

Llama3-70B generated syntactically well-
formed code with appropriate functional abstrac-
tion, but misinterpreted the spatial reference,
mapping “bottom left” to (1, 0) rather than (7,
0). L1ama3-8B shows similar behavior of correct
abstraction but incorrectly uses symbolic variables
(as x, y) for cell positions. Qwen2.5-7B generated
correct structure but applied incorrect relative
positions, leading to an execution-time placement
error. Qwen3-8B generated an unrelated response,
indicating failure in instruction following. This
suggests that while some models are able to
replicate correctly, others struggle with grounding
language in spatial coordinates.

Error Categorization FEach model-generated
code was executed, and errors were grouped based
on either execution failed or succeeded with a se-
mantic mismatch. Responses that failed to execute
were classified as board placement errors and for



Board Placement
Breakdown

Depth Mismatch. Value Error
25.9% 22.2%

41.5%
/ 51.9%

Dimen. Mismatch

Elem. Mismatch

Figure 5: Error distribution on SB (simple) boards for
the Qwen2.5-Coder-32B model after fine-tuning. The
primary pie chart shows the proportion of overall error
types, with “Board Placement” accounting for 41.5%
and 1 “Element. Mismatch” 58.5%. A secondary pie
further decomposes the Board Placement errors into Di-
mensions mismatch (51.9%), Depth Mismatch (25.9%),
and Value Error (22.2%)..

successfully executed code, we compare the result-
ing board with the ground truth and identify mis-
matches in shape type, color, or placement order.
These are classified as element mismatches.

Within board placement errors, we observed dif-
ferent error categories (see Figure 5 and Figure 6).
DepthMismatch occurs when a bridge is placed
without a supporting shape beneath it, typically
due to earlier placement errors. BridgePlacement
errors involve stacking bridges above the allowed
two-level height limit. DimensionMismatch and
ValueError arise when object placements exceed
board boundaries or use invalid coordinates. Other
errors, such as NameError and KeyError, result
from the use of undefined variables or incorrect
dictionary access (see Figure 4). Additionally,
environment-specific errors such as NotOnTopOf-
Screw and SameShapeStacking reflect violations of
symbolic constraints defined by the board logic.

Overall, fine-tuning reduced board placement
errors across models, with most remaining errors
attributable to element mismatches. (more details
are in Appendix A.5).

Instruction Similarity Table 1 reports improved
model performance on human-authored instruc-
tions following fine-tuning, with larger gains ob-
served on simple boards and smaller gains on reg-
ular boards. This difference may arise from the
phrasing of regular board instructions, which often
omit explicit spatial details, making it harder for
models to generate the intended code. In contrast,
instructions for simple boards are more concrete,
even when the corresponding code is complex.

To examine the effect of instruction variation,

Board Placement Breakdown

Dimen Mismatch

NotOnTopOfscre
Board Pl 86
Sameshapestacki
35.0%
s 42.9%
Depth Mlsyp‘ ‘ Bridge Place Error
Value Error

SameShapeAtAlternateLeve

Element Mismatch

Figure 6: Error distribution on RB (regular) boards for
the Qwen2.5-Coder-32B model after fine-tuning.

BLEU ES
SB RB SB RB

Score Ranges

Median Values 0.356 0.024 0979 0.623
Minimum Values 0.21 0.01 0.92 0.44
Maximum Values  0.66 0.1 0.99 0.82

Table 5: Median and min—max values of instruction sim-
ilarity (BLEU) and Embedding Similarity (ES) across
Simple Boards (SB) and Regular Boards (RB). Lower
ES scores on RB highlight increased linguistic variabil-
ity in human instructions for complex tasks.

we compute embedding similarity between syn-
thetic and human-authored instructions for the
same board configurations. We use BLEU to mea-
sure surface-level overlap and Sentence Transform-
ers (Reimers and Gurevych, 2019) cosine similarity
to capture semantic alignment.

Table 5 presents median and range values across
board types. Instructions for simple boards show
higher embedding similarity between synthetic and
human-authored variants and are associated with
larger execution accuracy gains. For regular boards,
the similarity is lower and performance drops. To
further analyze this effect, we examine how simi-
larity varies with the number of shapes in the ob-
ject. As shown in Table 9 (in Appendix), instruc-
tions referring to objects with fewer shapes tend to
have greater execution success. These results sug-
gest that lower semantic and lexical alignment be-
tween synthetic and human-authored instructions,
particularly in structurally repetitive but abstract
cases, limits the generalization ability of models
fine-tuned only on synthetic data.

5.3 Cross-Domain Generalization

To assess whether models generalize beyond the
vocabulary and structure observed during training,
we evaluate models fine-tuned on synthetic data on
other datasets.

Transfer to Hexagons The HEXAGONS
dataset (Lachmy et al., 2022) consists of human-
authored instructions for coloring specific cells on a



Instruction:

Make a red flower, by
coloring in red all tiles
adjacent to the 2nd tile
from the top in the 2nd
column from the left

[ [
[
LI

Target Code:
for row in range(3):
for col in range(3):
if (row == 0 and col == 2) or (row == 1 and col != 1) or
(row == 2):
paint(row, col, 'red")

Figure 7: Example from the drawing hexagons task
with a human-authored instruction and its corresponding
target code.

hexagonal grid, based on natural language descrip-
tions. These instructions are similar to repetitive
patterns, resembling the regular board structures
in our setup. The coloring operation, denoted as
paint(color, row, column), is analogous to
our put (shape, color, row, column) function.
The dataset uses a 10 x 18 hexagonal grid. For
evaluation, we use the test split®, which includes 62
drawing procedures. Table 6 reports model perfor-
mance on this task before and after fine-tuning. The
fine-tuned models show no improvement compared
to pretrained models. This limited transferability
may be attributed to the domain shift between the
training data and the HEXAGONS instructions,
which differ in both linguistic style and task struc-
ture. Additionally, the larger grid size (10 x 18)
significantly increases the complexity of spatial
reasoning and the difficulty of learning accurate
coordinate mappings.

Transfer to TidyBot The TIDYBOT dataset (Wu
et al., 2023) contains free-form human instruc-
tions for real-world object arrangement. The core
operation, expressed as pick_and_place(item,
newposition), is similar to shape placement in
our setting through put(shape, color, row,
column). Results are presented in Table 6. Top-
performing models such as Qwen2.5-32B and
LLaMA3-7@B maintain high task success, demon-
strating generalization to other domain instructions
and object categories. This suggests that fine-
tuning on structured synthetic spatial tasks sup-
ports transfer to some domains. In contrast, models
such as L1ama3. 1-8B, Qwen3-8B show significant
performance degradation, indicating limited gen-

3https ://github.com/OnlpLab/Hexagons/blob/
main/data/test. jsonl

# Summary: Put clothes in the laundry basket and
toys in the storage box.

Target Code:

objects = ["socks", "toy car", "shirt", "Lego brick"]
receptacles = ["laundry basket", "storage box"]
pick_and_place("socks", "laundry basket")
pick_and_place("toy car", "storage box")
pick_and_place("shirt", "laundry basket")
pick_and_place("Lego brick", "storage box")

Figure 8: Example task from Tidybot with human-
authored instruction and corresponding target code.

Model HEXAGONS TIDYBOT
Before After Before After
Qwen2.5-Coder-7B 0.00 0.03 0.00 0.00
Llama3.1-8B 0.00 0.00 0.00 0.039
Qwen3-8B 0.00 0.00 0.00 0.00
Qwen2.5-Coder-32B 0.10 0.11 0.82 0.90
Qwen3-32B 0.00 0.03 0.00 0.00
Llama3.3-70B 0.06 0.10 0.00 0.06
Human-Baseline 0.76 0.95

Table 6: Model performance on HEXAGONS and
TIDYBOT tasks before and after fine-tuning.

eralization and potential overfitting to the training
domain.

6 Conclusion

This paper investigates when and how synthetic in-
struction data can support generalization to human-
authored instructions in grounded spatial reasoning
tasks. Our findings show that synthetic-only fine-
tuning can enable generalization when the arrange-
ment does not involve object repetitions. Through
semantic similarity analysis and error categoriza-
tion, we identified referential ambiguity as a bot-
tleneck: performance declines when instructions
contain linguistic variations due to object repeti-
tions. We also observe that regular boards execu-
tion success rates see no improvement even with
prompt-style variations and few-shot prompting.
This suggests that LLMs trained on direct, explicit
instruction sets are insufficiently equipped to han-
dle the nuances of compositional abstraction in-
herent in human-authored instructions. These in-
structions consists implicit repetition, or structural
symmetry posing challenges for models that lack
inductive bias toward programmatic generalization.
Future work should focus on developing synthetic
datasets that mimic these linguistic variations.


https://github.com/OnlpLab/Hexagons/blob/main/data/test.jsonl
https://github.com/OnlpLab/Hexagons/blob/main/data/test.jsonl

Limitations

Our study focuses on generalization from synthetic
to human instructions in spatial reasoning tasks,
but several limitations remain. First, the training
data is entirely synthetic and rule-based; while it
enables controlled supervision, it lacks the linguis-
tic diversity, ambiguity, and noise characteristic
of real-world language. Second, the target code
representation is highly task-specific, designed for
grid-based pick-and-place operations, which may
limit transferability to other spatial reasoning do-
mains or instruction-following tasks with different
semantics. Third, although our evaluation includes
human-authored instructions, they are limited to
single-turn settings and do not capture the chal-
lenges of multi-turn or collaborative spatial inter-
actions.

References

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph P. Turian. 2020.
Experience grounds language. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 8718-8735. Association for
Computational Linguistics.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016.
Natural language communication with robots. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 751-761, San Diego, California. Association
for Computational Linguistics.

Michael Brenner. 2007. Situation-aware interpretation,
planning and execution of user commands by au-
tonomous robots. In IEEE RO-MAN 2007, 16th IEEE
International Symposium on Robot & Human Interac-
tive Communication, August 26-29, 2007, Jeju Island,
South Korea, Proceedings, pages 540-545. IEEE.

Kranti Chalamalasetti, Jana Gotze, Sherzod Haki-
mov, Brielen Madureira, Philipp Sadler, and David
Schlangen. 2023. clembench: Using game play to
evaluate chat-optimized language models as conver-
sational agents. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 11174—11219, Singapore. Associ-
ation for Computational Linguistics.

Akshay Chaturvedi, Kate Thompson, and Nicholas
Asher. 2024. Nebula: A discourse aware Minecraft
builder. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 6431-6443,
Miami, Florida, USA. Association for Computational
Linguistics.

Bao-Anh Dang-Vu, Oliver Porges, and Médximo A. Roa.
2015. Interpreting manipulation actions: From lan-
guage to execution. In Robot 2015: Second Iberian
Robotics Conference - Advances in Robotics, Lisbon,
Portugal, 19-21 November 2015, Volume 1, volume
417 of Advances in Intelligent Systems and Comput-
ing, pages 175-187. Springer.

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi
Zhang. 2023. Task and motion planning with large
language models for object rearrangement. In IROS,
pages 2086-2092.

Andrew Goldberg, Kavish Kondap, Tianshuang Qiu,
Zehan Ma, Letian Fu, Justin Kerr, Huang Huang,
Kaiyuan Chen, Kuan Fang, and Ken Goldberg. 2024.
Blox-net: Generative design-for-robot-assembly us-
ing VLM supervision, physics simulation, and a robot
with reset. CoRR, abs/2409.17126.

Anders Green, Kerstin Severinson Eklundh, Britta
Wrede, and Shuyin Li. 2006. Integrating miscommu-
nication analysis in natural language interface design
for a service robot. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS
2006, October 9-15, 2006, Beijing, China, pages
4678-4683. IEEE.

Jun Hatori, Yuta Kikuchi, Sosuke Kobayashi, Kuniyuki
Takahashi, Yuta Tsuboi, Yuya Unno, Wilson Ko, and
Jethro Tan. 2018. Interactively picking real-world
objects with unconstrained spoken language instruc-
tions. In 2018 IEEE International Conference on
Robotics and Automation, ICRA 2018, Brisbane, Aus-
tralia, May 21-25, 2018, pages 3774-3781. IEEE.

Petra Hendriks, Charlotte Koster, and John CJ Hoeks.
2014. Referential choice across the lifespan: Why
children and elderly adults produce ambiguous pro-
nouns. Language, cognition and neuroscience,
29(4):391-407.

Zichao Hu, Junyi Jessy Li, Arjun Guha, and Joydeep
Biswas. 2024. Robo-instruct: Simulator-augmented
instruction alignment for finetuning code Illms. arXiv
preprint arXiv:2405.20179.

Chenguang Huang, Oier Mees, Andy Zeng, and Wol-
fram Burgard. 2023a. Visual language maps for robot
navigation. In IEEE International Conference on
Robotics and Automation, ICRA 2023, London, UK,
May 29 - June 2, 2023, pages 10608-10615. IEEE.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. 2023b. Voxposer:
Composable 3d value maps for robotic manipula-
tion with language models. In Conference on Robot
Learning, CoRL 2023, 6-9 November 2023, Atlanta,
GA, USA, volume 229 of Proceedings of Machine
Learning Research, pages 540-562. PMLR.

Helge Hiittenrauch, Kerstin Severinson Eklundh, An-
ders Green, and Elin Anna Topp. 2006. Investigating
spatial relationships in human-robot interaction. In
2006 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS 2006, October 9-15,
2006, Beijing, China, pages 5052-5059. IEEE.


https://doi.org/10.18653/V1/2020.EMNLP-MAIN.703
https://doi.org/10.18653/v1/N16-1089
https://doi.org/10.1109/ROMAN.2007.4415145
https://doi.org/10.1109/ROMAN.2007.4415145
https://doi.org/10.1109/ROMAN.2007.4415145
https://doi.org/10.18653/v1/2023.emnlp-main.689
https://doi.org/10.18653/v1/2023.emnlp-main.689
https://doi.org/10.18653/v1/2023.emnlp-main.689
https://doi.org/10.18653/v1/2024.findings-emnlp.374
https://doi.org/10.18653/v1/2024.findings-emnlp.374
https://doi.org/10.1007/978-3-319-27146-0_14
https://doi.org/10.1007/978-3-319-27146-0_14
https://doi.org/10.1109/IROS55552.2023.10342169
https://doi.org/10.1109/IROS55552.2023.10342169
https://doi.org/10.48550/ARXIV.2409.17126
https://doi.org/10.48550/ARXIV.2409.17126
https://doi.org/10.48550/ARXIV.2409.17126
https://doi.org/10.1109/IROS.2006.282256
https://doi.org/10.1109/IROS.2006.282256
https://doi.org/10.1109/IROS.2006.282256
https://doi.org/10.1109/ICRA.2018.8460699
https://doi.org/10.1109/ICRA.2018.8460699
https://doi.org/10.1109/ICRA.2018.8460699
https://doi.org/10.1109/ICRA48891.2023.10160969
https://doi.org/10.1109/ICRA48891.2023.10160969
https://proceedings.mlr.press/v229/huang23b.html
https://proceedings.mlr.press/v229/huang23b.html
https://proceedings.mlr.press/v229/huang23b.html
https://doi.org/10.1109/IROS.2006.282535
https://doi.org/10.1109/IROS.2006.282535

Brian Ichter, Anthony Brohan, Yevgen Chebotar,
Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan
Julian, Dmitry Kalashnikov, Sergey Levine, Yao Lu,
Carolina Parada, Kanishka Rao, Pierre Sermanet,
Alexander Toshev, Vincent Vanhoucke, and 26 oth-
ers. 2022. Do as I can, not as I say: Grounding
language in robotic affordances. In Conference on
Robot Learning, CoRL 2022, 14-18 December 2022,
Auckland, New Zealand, volume 205 of Proceed-
ings of Machine Learning Research, pages 287-318.
PMLR.

Chenxi Jiang, Chuhao Zhou, and Jianfei Yang. 2025.
Rei-bench: Can embodied agents understand vague

human instructions in task planning? CoRR,
abs/2505.10872.

Omkar Joglekar, Shir Kozlovsky, Tal Lancewicki,
Vladimir Tchuiev, Zohar Feldman, and Dotan Di Cas-
tro. 2024. Towards natural language-driven industrial
assembly using foundation models. In ICLR 2024
Workshop on Large Language Model (LLM) Agents.

Chalamalasetti Kranti, Sherzod Hakimov, and David
Schlangen. 2024a. Retrieval-augmented code gener-
ation for situated action generation: A case study on
Minecraft. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 11159—
11170, Miami, Florida, USA. Association for Com-
putational Linguistics.

Chalamalasetti Kranti, Sherzod Hakimov, and David
Schlangen. 2024b. Towards no-code programming
of cobots: Experiments with code synthesis by large
code models for conversational programming. CoRR,
abs/2409.11041.

Royi Lachmy, Valentina Pyatkin, Avshalom Manevich,
and Reut Tsarfaty. 2022. Draw me a flower: Process-
ing and grounding abstraction in natural language.
Transactions of the Association for Computational
Linguistics, 10:1341-1356.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming
Yin. 2023. Synthetic data generation with large lan-
guage models for text classification: Potential and
limitations. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 10443-10461. Association for Computational
Linguistics.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as policies: Language model pro-
grams for embodied control. In IEEE International
Conference on Robotics and Automation, ICRA 2023,
London, UK, May 29 - June 2, 2023, pages 9493—
9500. IEEE.

Jonghan Lim, Sujani Patel, Alex Evans, John Pim-
ley, Yifei Li, and Ilya Kovalenko. 2024. Enhancing
human-robot collaborative assembly in manufactur-
ing systems using large language models. In 20th

10

IEEE International Conference on Automation Sci-
ence and Engineering, CASE 2024, Bari, Italy, Au-
gust 28 - Sept. 1, 2024, pages 2581-2587. IEEE.

Fangyu Liu, Guy Emerson, and Nigel Collier. 2023.
Visual spatial reasoning. Trans. Assoc. Comput. Lin-
guistics, 11:635-651.

Annabella Macaluso, Nicholas Cote, and Sachin Chitta.
2024. Toward automated programming for robotic
assembly using chatgpt. In 2024 IEEE International
Conference on Robotics and Automation (ICRA),
pages 17687-17693. IEEE.

Marvin Minsky. 1980. K-lines: A theory of memory.
Cognitive science, 4(2):117-133.

Mihai Nadas, Laura Diosan, and Andreea Tomescu.
2025. Synthetic data generation using large lan-
guage models: Advances in text and code. CoRR,
abs/2503.14023.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
Minecraft. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5405-5415, Florence, Italy. Association for
Computational Linguistics.

Linus Nwankwo, Bjoern Ellensohn, Ozan Ozdenizci,
and Elmar Rueckert. 2025. Reli: A language-
agnostic approach to human-robot interaction. arXiv
preprint arXiv:2505.01862.

Rohan Paul, Jacob Arkin, Derya Aksaray, Nicholas Roy,
and Thomas M. Howard. 2018. Efficient grounding
of abstract spatial concepts for natural language in-
teraction with robot platforms. Int. J. Robotics Res.,
37(10).

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3980-3990.
Association for Computational Linguistics.

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liy-
iming Ke, Karl Pertsch, Quan Vuong, James Tan-
ner, Anna Walling, Haohuan Wang, Niccolo Fusai,
Adrian Li-Bell, Danny Driess, Lachy Groom, Sergey
Levine, and Chelsea Finn. 2025. Hi robot: Open-
ended instruction following with hierarchical vision-
language-action models. CoRR, abs/2502.19417.

Mohit Shridhar and David Hsu. 2018. Interactive visual
grounding of referring expressions for human-robot
interaction. In Robotics: Science and Systems X1V,
Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, USA, June 26-30, 2018.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,


https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://doi.org/10.48550/ARXIV.2505.10872
https://doi.org/10.48550/ARXIV.2505.10872
https://doi.org/10.18653/v1/2024.findings-emnlp.652
https://doi.org/10.18653/v1/2024.findings-emnlp.652
https://doi.org/10.18653/v1/2024.findings-emnlp.652
https://doi.org/10.48550/ARXIV.2409.11041
https://doi.org/10.48550/ARXIV.2409.11041
https://doi.org/10.48550/ARXIV.2409.11041
https://doi.org/10.1162/tacl_a_00522
https://doi.org/10.1162/tacl_a_00522
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.647
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.647
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.647
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/CASE59546.2024.10711843
https://doi.org/10.1109/CASE59546.2024.10711843
https://doi.org/10.1109/CASE59546.2024.10711843
https://doi.org/10.1162/TACL_A_00566
https://doi.org/10.48550/ARXIV.2503.14023
https://doi.org/10.48550/ARXIV.2503.14023
https://doi.org/10.18653/v1/P19-1537
https://doi.org/10.18653/v1/P19-1537
https://doi.org/10.1177/0278364918777627
https://doi.org/10.1177/0278364918777627
https://doi.org/10.1177/0278364918777627
https://doi.org/10.18653/V1/D19-1410
https://doi.org/10.18653/V1/D19-1410
https://doi.org/10.48550/ARXIV.2502.19417
https://doi.org/10.48550/ARXIV.2502.19417
https://doi.org/10.48550/ARXIV.2502.19417
https://doi.org/10.15607/RSS.2018.XIV.028
https://doi.org/10.15607/RSS.2018.XIV.028
https://doi.org/10.15607/RSS.2018.XIV.028

Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In IEEE International Con-
ference on Robotics and Automation, ICRA 2023,
London, UK, May 29 - June 2, 2023, pages 11523—
11530. IEEE.

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and
Cynthia Matuszek. 2020. Robots that use language.
Annu. Rev. Control. Robotics Auton. Syst., 3:25-55.

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar-
quez, Alberto Olmo Hernandez, and Subbarao Kamb-
hampati. 2023. On the planning abilities of large
language models (A critical investigation with a pro-
posed benchmark). CoRR, abs/2302.06706.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and
Ashish Kapoor. 2024. Chatgpt for robotics: De-
sign principles and model abilities. IEEE Access,
12:55682-55696.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2024a. Voyager: An open-ended
embodied agent with large language models. Trans.
Mach. Learn. Res., 2024.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shrid-
har, Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe Xu,
and Xiaolong Wang. 2024b. Gensim: Generating
robotic simulation tasks via large language models.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert,
Andy Zeng, Shuran Song, Jeannette Bohg, Szymon
Rusinkiewicz, and Thomas A. Funkhouser. 2023.
Tidybot: Personalized robot assistance with large
language models. In IROS, pages 3546-3553.

Mengdi Xu, Peide Huang, Wenhao Yu, Shiqi Liu,
Xilun Zhang, Yaru Niu, Tingnan Zhang, Fei Xia,
Jie Tan, and Ding Zhao. 2023. Creative robot tool
use with large language models. arXiv preprint
arXiv:2310.13065.

A Appendix
A.1 Prompt Templates

In our task setup, LLMs are prompted to translate
natural language instructions into structured code
representations. We adopt a chat-style format to
align with the pretraining of instruction-tuned mod-
els and design a multi-part prompt (see Figure 11
and Figure 12) that includes details of the 2.5D
grid environment along with available API func-
tions. The prompt structure differs slightly between
Simple and Regular boards—particularly in terms
of response constraints and the nature of in-context
examples provided. This same prompt format is
used both during inference and fine-tuning.

11

Use "nbb(board: np.ndarray, colors: $COLORS, x: int, y: int)" to place a
'nbb' object on the board

(a) Function Signature (FSG)

def nbb(board, colors, X, y):
shapes = ['nut', 'bridge-v', 'bridge-h']
for shape, color, dx, dy in zip(shapes, colors, [
put(board, shape, color, x + dx, y + dy)

1. [0 1):
(b) Function Definition (FD)

def nbb(board, colors, x, y):

Places a nut, a vertical bridge, and a horizontal bridge on the board
in that order, using the given colors starting at the specified coordinates (x, y).
Some or all of the shapes may be stacked.

(C) Function Schematic (FSC)

Figure 9: Different styles of prompt variations used for
regular board instructions during training and inference.

A.2 Prompt Variations

To explore how the structure of model prompts
affects performance, we introduce three prompt
variations for regular board instructions. These
variations differ in how the abstract function used
in the instruction (e.g., nbb) is presented in the
prompt context. All three settings include the in-
struction and the expected output. The difference
lies in the prompt information provided about the
nbb function. These prompt settings were used
consistently across both training and evaluation for
each variation. Their impact on model performance
is discussed in Section 5.1, and associated results
are reported in Table 2.

Function Signature (FSG): The prompt in-
cludes only the function signature. This setting
simulates the case where the model is expected to
use a known abstract function without being shown
its implementation. The intent is to assess whether
the model can learn to infer the correct usage pat-
tern based solely on its name.

Function Definition (FD): The full definition of
the function is included in the prompt. This setting
provides the most information about what the func-
tion does. It is intended to reduce ambiguity during
training and inference and help models correctly
ground object placement logic based on a concrete
implementation.

Function Schematic (FSC): The prompt in-
cludes the function signature and a schematic doc-
string describing the function’s purpose, but not the
actual implementation. This setup serves as an in-
termediate between FSG and FSD. The schematic
is intended to provide semantic guidance without
dictating specific implementation. It tests whether


https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1146/ANNUREV-CONTROL-101119-071628
https://doi.org/10.48550/ARXIV.2302.06706
https://doi.org/10.48550/ARXIV.2302.06706
https://doi.org/10.48550/ARXIV.2302.06706
https://doi.org/10.1109/ACCESS.2024.3387941
https://doi.org/10.1109/ACCESS.2024.3387941
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=OI3RoHoWAN
https://openreview.net/forum?id=OI3RoHoWAN
https://doi.org/10.1109/IROS55552.2023.10341577
https://doi.org/10.1109/IROS55552.2023.10341577

ST HA
Model SB RB SB RB
Qwen2.5-Coder-7B 095 0.73 0.45 0.20
Llama3.1-8B 0.00 0.00 0.00 0.02
Qwen3-8B 0.03 0.29 0.01 0.10
Qwen2.5-Coder-32B  0.97 0.98 0.82 0.51
Qwen3-32B 0.89 0.52 0.49 0.27
Llama3.3-70B 0.73 0.00 0.30 0.07

Table 7: Task performance (accuracy) on simple boards
(SB) and regular boards (RB) for synthetic (ST) instruc-
tions and human-authored (HA) instructions using few-
shot prompting with the Fine-tuned models. Except for
Qwen2.5-Coder-32B all the models performance was
detoriated.

models benefit from lightweight documentation,
which mirrors how humans often interact with par-
tially known APIs.

A.2.1 Few-shot Prompting

To evaluate whether performance can be further im-
proved with in-context examples, we experimented
with few-shot prompting at inference time using the
fine-tuned models. For each evaluation instance,
we added five synthetic instruction—output pairs
of the same board type (simple or regular) to the
prompt, followed by the test instruction. The exam-
ples were randomly sampled from the training data
but excluded any exact match with the test input.

Table 7 reports the results. We observed that
few-shot prompting improved performance only
for Qwen2.5-Coder-32B model and its accuracy
is improved to 0.82 (compared to 0.68 in zero-
shot). However, the same setting led to a slight
performance drop on regular boards, possibly due
to increased sensitivity to syntactic variation in
human-authored instructions.

A.3 Fine-Tuning

Our dataset consists of spatial instruction-target
code pairs over two environment types: Simple
Boards (SB) and Regular Boards (RB). Table 8
summarizes the distribution across training, vali-
dation, and test splits for each board type. These
splits form the basis for all fine-tuning and evalu-
ation setups described below. All models are fine-
tuned using the Unsloth # framework with a 4-bit
quantization setup to reduce memory overhead. We
apply parameter-efficient fine-tuning using LoRA
with the following configuration: rank r 16,
a = 16, dropout=0.0, batch size = 8, learning rate
= le—4, and the adam-8bit optimizer. This config-

*https://unsloth.ai/

12

Dataset SB RB TB
Training Set 1072 1168 96
Validation Set 130 130 -

Test Set 130 130 96

Table 8: Dataset statistics showing the number of boards
in Simple Boards (SB), Regular Boards (RB), and num-
ber of scenarios in TidyBot (TB) across training, valida-
tion, and test splits.

uration was selected based on preliminary ablation
experiments that balanced good trade-off between
performance and training efficiency. Fine-tuning
is performed for three epochs, and four gradient
accumulation steps, across all experiments. We use
the same prompt template format described in Ap-
pendix A.1, ensuring consistency between training
and evaluation. All experiments were conducted
on a single NVIDIA A100 80GB GPU.

A.3.1 Ablation Study

We conducted multiple ablation studies focused on
finding the suitable hyper parameter configuration.
We begin with identifying the impact of learning
rate and batch size, keeping the number of training
epochs fixed at 3. We compared learning rates of
le—4 and 2e—4, across batch sizes of 2, 4 and 8.
We observed that higher learning rates (2e—4) led
to faster convergence but sometimes caused over-
fitting in larger models, particularly when paired
with smaller batch sizes. Validation loss curves
remained stable for smaller models, but the down-
stream accuracy did not consistently improve.

To further examine the effect of training dura-
tion, we varied the number of epochs while using
early stopping (patience 2). We compared runs
with 1 epoch, 2 epochs, and 3 epochs (with and
without early stopping). Reducing to 1 epoch with
a higher learning rate (2e—4) led to unstable gains
and greater variance across models. Overall, 3
epochs with early stopping of 2 provided more ro-
bust results across both board types.

Finally, we evaluated how many training exam-
ples were needed to achieve meaningful general-
ization. We fixed the model and training setup, and
varied the number of fine-tuning samples (e.g., 100,
300, 500, and 1000). We observed that most mod-
els began to generalize reliably to human-authored
instructions only when trained on at least 1000 ex-
amples (balanced across simple and regular boards).
With fewer than 500 examples, performance de-
graded sharply, especially for regular boards.


https://unsloth.ai/

: SB RB
Shapes Per Object o) o'y Eg SR BLEU ES SR
2 0.553  0.979 1.00 0.033 0.545 0.80
3 0422  0.977 0.90 0.027 0.626 0.43
4 0.327  0.979 0.74 0.024 0.635 0.46
5 0275 0.979 029 0.021 0.671 0.59

Table 9: Instruction similarity and execution success rate (SR) for Qwen2.5-Coder-32B, grouped by number of
shapes per object. Higher shape counts correlate with reduced lexical and semantic similarity between human and
synthetic instructions, and lower execution success.; ES: Embedding Similarity Score;

A.4 Instruction Similarity vs. Execution
Success

We compute similarity between synthetic and hu-
man instructions associated with a given board con-
figurations using two measures: BLEU (surface-
level overlap) and Embedding cosine similarity us-
ing Sentence-BERT (semantic-level alignment).

Table 9 shows how the semantic and lexical
similarity between synthetic and human-authored
instructions varies with the number of shapes in-
volved in the described object. We observe a clear
trend: as the number of shapes per object increases,
both lexical and semantic similarity between syn-
thetic and human-written instructions decreases.
This decrease is mirrored by a drop in execution
success rate (SR).

For simple boards, even though the instruc-
tions are often more explicit than those for regular
boards, the primary challenge lies in mapping the
linguistic description to precise spatial relations
and composing an appropriate abstract function.
When more shapes are involved, spatial dependen-
cies become more complex, and function construc-
tion becomes harder. This leads to a significant
decline in execution success, from 1.00 for two-
shape objects to 0.29 for five-shape objects.

For regular boards, the instructions often de-
scribe repetitive object placement patterns using
abstract or minimal phrasing (e.g., “repeat in the
next row”). As the number of shapes in the ob-
ject increases, the underlying pattern logic also
becomes more complex, which complicates code
generation, particularly when the model must cor-
rectly interpret spatial regularities not explicitly
stated in the instruction. While the SR remains
higher than for simple boards in some cases, the
same downward trend is observed.

These findings suggest that both the semantic
gap between synthetic and human instructions and
the object complexity (in terms of shape count and

13

spatial arrangement) jointly influence model gener-
alization. Models fine-tuned only on synthetic data
show limited ability to bridge this gap as object
complexity increases.

A.5 Error Categorization

Table 10 presents the percentage of error types
observed in model outputs, both before and after
fine-tuning. For some models, entries are marked
with a dash (’-’), indicating a 100% abort rate and
the absence of usable responses for error catego-
rization.

The percentages are computed based on the total
number of errors extracted from the model out-
puts, categorized into Board Placement and Ele-
ment Mismatch errors.

Before fine-tuning, most models exhibit a higher
proportion of Board Placement errors. This is often
due to spurious generations violating environmen-
tal constraints, such as exceeding spatial bound-
aries or ignoring depth ordering. After fine-tuning,
however, Element Mismatch becomes the domi-
nant error type—suggesting that while structural
placement improves, models still struggle to accu-
rately map the intended elements to their correct
spatial positions.

The table also helps to qualitatively assess the
overall trend in error composition and model be-
havior across fine-tuning stages.

A.6 Human Evaluation

To establish a human performance baseline, we de-
veloped an interactive web interface (Figure 10)
that displays the instruction on the left and an ed-
itable 8x8 grid on the right. Annotators were
tasked with reconstructing the spatial configuration
described by the input instruction using the grid.
The interface included features such as cell copy-
paste to efficiently handle repeated structures and
embedded step-by-step guidelines to standardize
the reconstruction process.



Board Placement | Element Mismatch |

Model SB RB SB RB
Before  After Before  After | Before After Before  After
Qwen2.5-Coder-7B 80.17  50.00 — 24.00 | 19.83  50.00 — 76.47
Llama3.1-8B 55.00 61.56 45.00 28.41 | 45.00 38.46 0.00 71.59
Qwen3-8B — 50.72 100.00 66.67 — 49.28 — 33.33
Qwen2.5-Coder-32B  44.64 64.29 33.65 20.00 | 55.36 35.71 66.35 80.00
Qwen3-32B 100.00 50.82 100.00 25.93 — 49.18 — 74.07
Llama3.3-70B 78.45 40.00 14.29 16.46 | 21.56 60.00 85.71 83.54

Table 10: Error Categorization across nodel responses before and after fine-tuning

‘cchbis-reconstiuct 27 Naming Legend for objects
Fill the first column with nnbs objects with a green bridge, two red washers and a red o
screw. Place 8 more nnbs objects in the same colors in the 4th column. Position a nnbs 7 B '
5 N o : vertical orizontal
object in the same colors in each row, in column 7 as well. . washer . screw - nut bridge [ idge nnbs
Working Board Source Board
[ [o] [O] [e]
| —— |

Figure 10: Web interface used for human reconstruction of spatial configurations. Instructions appear on the left,
while the right panel allows annotators to place objects on an 8x8 grid using a visual palette. The interface supports
actions such as object selection and cell duplication to aid in building complex or repetitive structures.

14



An annotator was recruited to perform the task.
While the annotator had no prior experience in
spatial layout tasks, they were familiar with general
data labeling workflows. The evaluation involved
reconstructing a total of 260 boards (130 Simple
and 130 Regular) and required approximately 30
hours to complete.

The reconstructed boards were programmati-
cally (by executing the constructed scripts as a re-
sult of interaction) compared to the corresponding
gold configurations. The resulting match scores are
reported as human baseline accuracies and serve as
an upper bound reference for model performance.

15



7

TEMPLATE A.6.1
System Info

You are a helpful assistant who is designed to interpret and translate natural language
instructions into python executable code snippets.

Environment Info

The environment is an 8x8 grid allowing shape placement and stacking. A shape can be placed in any
cell, while stacking involves adding multiple shapes to the same cell, increasing its depth. Shapes
typically occupy a single cell, except for the "bridge,” which spans two cells and requires two
other shapes for stacking. Horizontal bridges span adjacent columns (left and right), and vertical
ones span consecutive rows (top and bottom). Stacking is only possible if the shapes have matching
depths.

In the grid, columns align with the x-axis and rows with the y-axis. Python indexing is
used to identify each cell. The cell in the top-left corner is in the first row and first column,
corresponding to x and y values of @, @. Similarly, the top-right corner cell is in the first row
and eighth column, with x and y values of 0, 7.

- Use the shape name ’bridge-h’ if a bridge is placed horizontally

- Use the shape name ’bridge-v’ if a bridge is placed vertically

The following functions are already defined; therefore, do not generate additional code for
it

- Use ‘put(board: np.ndarray, shape: string, color: string, x: int, y: int) to place a shape on the
board

Task Info

For each instruction labeled Instruction: please respond with code under the label Function:
followed by a newline and usage for the function under the label Usage: followed by a newline.

Context Info

$INCONTEXT_SAMPLES

Other Info

Do not generate any other text/explanations.

The order of colors, x, y matters, as these are assigned to the shapes in the same sequence. Ensure
the response can be executed by Python ‘exec()¢, e.g.: no trailing commas, no periods, etc.

Let’s begin

Instruction:

$TEST_INSTRUCTION

\. J

Figure 11: Prompt template used for the spatial grounding task for Simple boards. The system information specifies
system level behavior, the environment information indicates the environment details of the user-agent environment,
the context information describes the in-context examples, task information indicates the specific response format to
follow.

16



7

TEMPLATE A.6.2
System Info

You are a helpful assistant who is designed to interpret and translate natural language
instructions into python executable code snippets.

Environment Info

The environment is an 8x8 grid allowing shape placement and stacking. A shape can be placed in any
cell, while stacking involves adding multiple shapes to the same cell, increasing its depth. Shapes
typically occupy a single cell, except for the "bridge,” which spans two cells and requires two
other shapes for stacking. Horizontal bridges span adjacent columns (left and right), and vertical
ones span consecutive rows (top and bottom). Stacking is only possible if the shapes have matching
depths.

In the grid, columns align with the x-axis and rows with the y-axis. Python indexing is
used to identify each cell. The cell in the top-left corner is in the first row and first column,
corresponding to x and y values of @, @. Similarly, the top-right corner cell is in the first row
and eighth column, with x and y values of @, 7.

- Use the shape name ’bridge-h’ if a bridge is placed horizontally - Use the shape name
’bridge-v’ if a bridge is placed vertically

The following functions are already defined; therefore, do not generate additional code for
-}Ese ‘put(board: np.ndarray, shape: string, color: string, x: int, y: int)‘ to place a shape on the
Pﬁi;g ‘$COMBO_NAME (board: np.ndarray, colors: $COLORS, x: int, y: int)‘ to place a ’$COMBO_NAME’
object on the board

Task Info

For each instruction labeled Instruction: please respond with code under the label Output:
followed by a newline.

Context Info

$INCONTEXT_SAMPLES

Other Info

Do not generate any other text/explanations.

The order of colors, x, y matters, as these are assigned to the shapes in the same sequence. Ensure
the response can be executed by Python ‘exec()¢, e.g.: no trailing commas, no periods, etc.

Lets begin

Instruction:
$TEST_INSTRUCTION

\.

Figure 12: Prompt template used for the spatial grounding task for Regular boards. The system information specifies
system level behavior, the environment information indicates the environment details of the user-agent environment,
the context information describes the in-context examples, task information indicates the specific response format to
follow.

17



	Introduction
	Related Work
	Task Formulation and Datasets
	Experimental Setup
	Evaluated Models & Parameters
	Evaluation Metrics

	Results
	Quantitative Analysis
	Qualitative Analysis
	Cross-Domain Generalization

	Conclusion
	Appendix
	Prompt Templates
	Prompt Variations
	Few-shot Prompting

	Fine-Tuning
	Ablation Study

	Instruction Similarity vs. Execution Success
	Error Categorization
	Human Evaluation


