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Abstract

The emergence of instruction-tuned large lan-
guage models (LLMs) has advanced the field of
dialogue systems, enabling both realistic user
simulations and robust multi-turn conversa-
tional agents. However, existing research often
evaluates these components in isolation, either
focusing on a single user simulator or a specific
system design, limiting the generalisability of
insights across architectures and configurations.
In this work, we propose clem:todd (chat-
optimized LLMs for task-oriented dialogue sys-
tems development), a flexible framework for
systematically evaluating dialogue systems un-
der consistent conditions. clem: todd enables
detailed benchmarking across combinations of
user simulators and dialogue systems, whether
existing models from literature or newly de-
veloped ones. To the best of our knowledge,
clem: todd is the first evaluation framework for
task-oriented dialogue systems that supports
plug-and-play integration and ensures uniform
datasets, evaluation metrics, and computational
constraints. We showcase clem: todd’s flex-
ibility by re-evaluating existing task-oriented
dialogue systems within this unified setup and
integrating three newly proposed dialogue sys-
tems into the same evaluation pipeline. Our
results provide actionable insights into how ar-
chitecture, scale, and prompting strategies af-
fect dialogue performance, offering practical
guidance for building efficient and effective
conversational Al systems.

1 Introduction

Task-oriented dialogue systems (McTear, 2002; Li
et al., 2017; Eric et al., 2017; Budzianowski et al.,
2018; Balakrishnan et al., 2019; Chen et al., 2019;
Elder et al., 2020) help users complete specific
goals, such as booking travel or making reserva-
tions, through multi-turn natural language interac-
tions. These systems must accurately interpret user
intent, manage ambiguity, and respond coherently.
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Figure 1: clem: todd framework facilitates turn-based
interactions between a user simulator (Player A) and
a dialogue system (Player B), coordinated by a Game
Master module.

With the rise of LLMs, these systems (Hudecek
and Dusek, 2023; Xu et al., 2024) have significantly
improved in handling task-oriented, goal-driven
conversations. In addition to enhancing dialogue
system capabilities, LLMs now play dual roles: as
end-to-end dialogue systems (Chung et al., 2023;
Dong et al., 2025) and as user simulators (Kojima
et al., 2022; Kazi et al., 2024) for training and
evaluation. However, evaluation remains a chal-
lenge (Casas et al., 2020; Braggaar et al., 2023).
Current evaluations often suffer from inconsistent
datasets, metrics, and compute settings, making it
difficult to compare models or draw conclusions
about system design.

A recent paradigm for evaluating LLMs
as agents, involves self-play in conversational
“games”. Frameworks such as clembench (Cha-
lamalasetti et al., 2023), GameEval (Qiao
et al., 2023), SPAG (Cheng et al., 2024), and
TextArena (Guertler et al., 2025) assess the capa-
bilities of LLMs in instruction following, logical
reasoning, and context retention across multi-turn
settings. However, they do not address the evalua-
tion of interactive systems built on LLMs, such as
task-oriented dialogue (TOD) systems.
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To address this gap, we introduce clem: todd !
(see Figure 1), an evaluation framework that builds
on the self-play framework setup for TOD. The
user simulator and dialogue system act as the two
players in the self-play setup, with a central con-
troller (game master) managing turn-taking, task
flow, and interactions with external tools such as
databases. This setup supports consistent bench-
marking, stress testing, and detailed analysis under
shared datasets, metrics, and resource constraints.

Using clem:todd, we explore three research
questions: (1) Can LLM-based self-play be adapted
to evaluate interactive TOD systems? (2) On the
MultiwOZ2.2 benchmark, a widely used dataset
for multi-domain TOD, how do user simulators and
dialogue systems perform across different models
and architectures? (3) Can clem: todd facilitate
evaluation beyond MultiWOZ to plug in new in-
stances, either derived from other datasets or gen-
erated synthetically, to enhance robustness testing?

We benchmark both existing dialogue systems
and three newly developed ones within our frame-
work, providing systematic comparisons and in-
sights across a range of configurations. Our contri-
butions are as follows: (a) we propose clem: todd,
a self-play-based evaluation framework for system-
level benchmarking of TOD systems; (b) we re-
evaluate existing systems and our proposed dia-
logue systems under the same benchmarking setup;
and (c) we analyse trade-offs across architectures,
model sizes, and user simulators, with a focus on
task performance and computational cost.

2 Related Work

Our work builds on research in: LLM-based TOD
systems, user simulators, task evaluation, and self-
play frameworks for multi-turn interaction.

LLM-Based TOD Systems leverage LLMs in di-
verse architectural setups to enable successful task
completion. Hudecek and Dusek (2023) proposed a
modular system using LLMs across functional com-
ponents, while InstructTOD (Chung et al., 2023)
and ProTOD (Dong et al., 2025) extended this de-
sign with performance-oriented enhancements. In
contrast, AutoTOD (Xu et al., 2024) introduced a
zero-shot monolithic system, showcasing the poten-
tial of LLMs as end-to-end systems. DARD (Gupta
et al., 2024) proposed a multi-agent framework,
coordinating domain-specific LLMs via a central
LLM-based dialogue manager.

lhttps://github.com/clp-research/clem—todd

LLM-Based User Simulators use LLMs to gen-
erate realistic, goal-driven user interactions for
training and evaluating dialogue systems. Kojima
et al. (2022); Davidson et al. (2023) leveraged in-
context learning to produce diverse and contextu-
ally appropriate responses. Sekulic et al. (2024)
fine-tuned LLMs on domain-specific data to mit-
igate hallucinations, while Kazi et al. (2024) pro-
posed an adaptive simulator that dynamically re-
sponds to the dialogue system it interacts with.

LLM-Based Task Evaluation explores using
LLMs as evaluators to assess dialogue quality and
task success. Recent work has prompted LLMs
to act as judges in both open-ended (Zheng et al.,
2023) and task-specific contexts (Liu et al., 2023b;
Thakur et al., 2024; Kim et al., 2024; Chan et al.,
2024; Bavaresco et al., 2024). Jia et al. (2024) ex-
plored automatic dialogue evaluation using LL.Ms,
and Hashemi et al. (2024) introduced LLM-Rubric,
a framework for structured, rubric-based evaluation
of language outputs.

Frameworks for Dialogue System Evaluation
Ghandeharioun et al. (2019) propose an evaluation
framework for dialogue-system self-play in open-
domain dialogue systems. Cheng et al. (2022) dis-
cuss the importance of using a goal-oriented user
simulator for improved evaluation. Xu et al. (2024)
showcase the evaluation of different dialogue sys-
tems against a single user simulator. Additionally
ConvLab (Zhu et al., 2020) and ParlAI® offer in-
frastructure for developing dialogue agents, while
DialEvalMetrics (Yeh et al., 2021) focuses on eval-
uation. However, none provide a unified setup for
controlled, plug-and-play experimentation across
LLM-based user simulators and dialogue systems,
evaluated with consistent metrics and compute con-
straints. clem: todd fills this gap by enabling sys-
tematic exploration of architectural choices, simu-
lator—system interactions, and scaling trade-offs.

LLM-Based Self-Play Frameworks Self-play
has recently been used to evaluate LLMs on multi-
turn tasks in frameworks like clembench (Cha-
lamalasetti et al., 2023), GameEval (Qiao
et al., 2023), SPAG (Cheng et al., 2024), and
TextArena (Guertler et al., 2025). These systems
focus on model-level evaluation, while clem: todd
adapts self-play for benchmarking full dialogue
systems.

2https://parl.ai/
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Building on these foundations, we propose
clem:todd an evaluation framework that in-
tegrates LLM-based user simulators, dialogue
systems, and automatic evaluation. It supports
flexible combinations of monolithic, modular, and
multi-agent architectures and evaluates them under
consistent metrics and compute settings. This
design enables comprehensive benchmarking and
reveals system interaction dynamics in controlled
conditions.

3 Methodology

We frame task-oriented dialogue as a form of “As-
sistance Game” (Laidlaw et al., 2024), where one
player needs assistance completing a task, and the
other must work toward recovering their reward
function. While Laidlaw et al. (2024) address the
learning problem, we use this framing to develop
an evaluation framework for testing different ap-
proaches to building dialogue systems.

3.1 “Self-Play” of Task-Oriented Dialogue

We build on clembench (Chalamalasetti et al.,
2023), a framework that realises conversational
games between two (LLM-simulated) players coor-
dinated by a Game Master. clem: todd reuses and
modifies the two-player setup as: (a) Player A is
an LLM-based user simulator that receives a goal
and a prompt (see Appendix 6) describing the task;
(b) Player B is a dialogue system that receives user
simulator utterances and a prompt (see Appendix 7
and 8) describing the task, with the objective of sat-
isfying Player A’s goal; and (c) the Game Master
orchestrates the interaction by passing utterances
between the two players and managing turn-level
coordination.

The Game Master enforces stricter format con-
straints than the base clembench setup by re-
quiring adherence to a predefined Tool Schema
(in JSON format) (e.g., followup, querydb,
validatebooking) to reflect the demands of real-
world deployment. Any violation aborts the conver-
sation, reinforcing that instruction following and
format compliance is essential. Valid tool calls
are executed programmatically, either to retrieve
database results, validate booking details, or for-
ward follow-up messages to the user simulator. The
schema is given in Figures 13-18 in Appendix.

A full interaction (see Figure 1) proceeds as fol-
lows: the user simulator (Player A) is primed with
a goal (e.g., booking a train ticket) and generates
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Figure 2: Overview of proposed dialogue system archi-
tectures. Monolithic, Modular-Prog, and Modular-LLM
configurations vary in how control and components are
handled by LLMs.

a natural language utterance (e.g., “l am looking
for a train to Paris from London’). This utterance
is passed to the dialogue system (Player B) via the
Game Master, which then returns a response (e.g.,
“Do you have a specific day/time in mind?”’) to the
simulator. The loop continues until the conversa-
tion ends when Player A signals by either generat-
ing the DONE token or when the maximum turn limit
(15) is reached. The Game Master then evaluates
the task success by comparing the system’s outputs
with the ground truth goal specification.

clem: todd draws inspiration from “self-play”
and adapts it to goal-driven task-oriented dialogue
systems, where the user and system take on distinct
roles. Building on prior works (Zhu et al., 2020; Xu
et al., 2024; Kazi et al., 2024), clem: todd employs
a schema-constrained interaction loop and supports
plug-and-play integration of user simulators and
dialogue systems across different architectures, en-
abling more robust and extensible benchmarking.

3.2 User Simulator

We leverage the generative capabilities of LLMs to
simulate realistic user interactions. The user simu-
lator is prompted (see Figure 6 in Appendix A.1)
with a set of goals, represented as natural language
objectives, and is intended to engage in a dialogue
with the system under evaluation to fulfill them.
The prompt includes relevant task context and di-
alogue history, enabling the user simulator to pro-
duce coherent, goal-oriented responses in the con-
versation. Such simulators facilitate automated
evaluation workflows, complementing real users.

3.3 Dialogue System Variants

As shown in Figure 1, clem:todd enables us to
plug in various dialogue systems. We benchmark
two existing systems and introduce three variants
(Figure 2), each representing a different architec-
tural paradigm and control mechanism.



3.3.1 Existing Dialogue Systems

We integrated two representative systems from
prior work: AutoTOD, a zero-shot monolithic
system that reported results on MultiwOZ 2.0
dataset (Xu et al., 2024), and a modular
pipeline (Hudecek and Dusek, 2023) that reported
results on MultiwOZ 2.2 dataset. These systems
were selected for their architectural diversity and
publicly available implementations. Attempts to
incorporate other approaches were not successful >
(see Appendix A.2 for details).

3.3.2 Proposed Dialogue Systems

Monolithic Dialogue System This variant uses
a single instruction-tuned LLM (see Figure 7 for
the prompt) to act as a the dialogue system, with
backend actions performed via “tool use”; i.e., pre-
diction of API calls. Although similar in style to the
zero-shot approach proposed by Xu et al. (2024),
our implementation differs in that their method
uses a LangChain-powered agent and generates
raw SQL queries directly from the LLM, whereas
ours avoids third-party agents and instead gener-
ates structured tool calls conforming to the Tool
Schema as described in Section 3.1.

Modular Dialogue System This design decom-
poses the dialogue pipeline processing into sub-
modules for intent detection, slot extraction, dia-
logue management, and response generation. (see
Figures 10, 11, 12 in the Appendix for prompt tem-
plates). We explore two variants that reflect distinct
control strategies: (a) Modular-Prog, where a pro-
grammatic dialogue manager executes modules in
a fixed order (a static pipeline); and (b) Modular-
LLM, where an LLM acts as the dialogue manager,
(see Figure 8 for the prompt), dynamically selecting
the next sub-module based on intermediate outputs
(an adaptive pipeline). All sub-modules use LLMs
and produce outputs aligned with the Tool Schema.
Outputs are validated before being passed down-
stream. Both variants follow a simple, traditional
modular design, allowing us to assess how classical
pipelines perform when augmented with LLMs.

3InstructTOD, evaluted on Multiwoz 2.1 (Chung et al.,
2023) encountered compatibility issues between the agent
implementation and LLM outputs, which led to repeated exe-
cution errors. For ProTOD, evaluted on Multiwoz 2.0 (Dong
et al., 2025), the publicly released code lacked essential imple-
mentation components, rendering integration into our frame-
work infeasible.

4 Experimental Setup

Dataset We conduct experiments using the
widely used MultiwOZ 2.2 dataset (Budzianowski
et al., 2018; Hung et al., 2022), which contains
annotated dialogues across multiple domains such
as restaurant, hotel, and train booking. Importantly
for our purposes, each dialogue comes with a ver-
bally specified goal that was given to the ‘customer’
(e.g., “you want to book a Chinese restaurant in the
south of the city, for a party of 4”), and a struc-
tured representation of the dialogue outcome. For
evaluation, we use only the test split (1000 tasks).

To ensure a focus on end-to-end task completion,
we filter the dataset to include only tasks that end in
booking actions, resulting in 117 tasks (60 single-
domain and 57 multi-domain dialogues) consist-
ing of three domains (restaurant, hotel, and train).
These filtered dialogues goals, after pre-processing
to remove HTML artifacts, are directly used as in-
put in the user simulator prompt. This filtering is
specific to our evaluation goals and does not reflect
a limitation of the clem: todd framework, which
supports arbitrary task types and domains (more
details in Section 5.3).

Model Selection We experiment with both open-
weight and closed-weight LLMs to compare their
effectiveness in task-oriented dialogue settings.
The open-weight models include Llama 3.1-8B,
Llama 3.2—1B, Llama-3.2-3B, Llama 3.3-70B from
the Llama family (Grattafiori et al., 2024), as well
as Qwen2.5-7B, 32B (Qwen et al., 2025) allow-
ing us to examine performance differences across
model sizes and families. For closed-weight mod-
els, we evaluate GPT-40 (version gpt-40-2024-08-
06). Additionally, we conducted preliminary tests
with DeepSeek, but it was excluded from final ex-
periments due to persistent issues with inconsistent
JSON output formatting.

This model selection enables us to explore trade-
offs between model accessibility, computational
cost, and task success in dialogue system deploy-
ment. All models were run with a fixed temperature
of 0 and a max_new_tokens limit of 500. GPT-
40 was accessed via the OpenAl API, while open-
weight models were loaded and executed locally
on A100 GPUs.

Evaluation Metrics Our evaluation considers
both traditional (Budzianowski et al., 2018) and
goal-oriented metrics for measuring the efficiency
of the dialogue system. We use Inform, which mea-



sures whether the system provides the correct entity
matching the user’s request; and Booking Accuracy,
a metric recommended by (Xu et al., 2024), which
evaluates whether the final task such as making
a reservation was successfully completed. These
metrics are computed automatically by comparing
system outputs against the ground-truth annotations
in the MultiWOZ test set. Since we filtered tasks to
include only those requiring booking actions in the
restaurant, hotel, and train domains tasks, the re-
sulting set excludes entity attributes such as phone
number or address, which appear only in the attrac-
tion and taxi domains. Therefore, we do not report
the Success metric in our evaluation.

In addition to task-specific metrics, we also eval-
uate the overall quality of dialogue. Inspired by
Kazi et al. (2024), we report dialogue-level met-
rics such as naturalness, coherence, and diversity.
Furthermore, to assess the realism of the user simu-
lator’s utterances, we conduct a “Turing test” with
human evaluators to determine their naturalness
(see Appendix A.4 for details).

5 Results

We organize our results around the research ques-
tions introduced in Section 1, providing quantita-
tive comparisons and visualizations.

5.1 Extending Self-Play to Task-Oriented
Dialogue

Can existing LLM-based self-play frameworks be
extended to evaluate interactive systems built us-
ing LLMs, such as TOD systems? We explore this
question by building on the self-play framework,
clembench (Chalamalasetti et al., 2023), to a TOD
setting in a framework that we call clem: todd. It
retains the core structure of the existing framework:
a two-agent interaction loop, a central controller for
turn coordination, logging and scoring mechanisms
for evaluation. In addition, we introduce: (i) inter-
facing with external APIs or simulated databases,
and (ii) computing task-specific metrics such as slot
coverage, dialogue efficiency, and task success.

To wvalidate its viability, we instantiated
clem: todd with different pairings of user simula-
tors (US) and dialogue systems (DS) starting with
an examination of US effectiveness and its impact
on dialogue evaluation. To address this overarching
question, we first attend to the sub-questions.

Model (US) Naturalness Coherence Diversity TT
Llama-3.2-1B 3.84 2.84 1.00
Llama-3.2-3B 2.42 1.75 1.00
Qwen2.5-7B 2.75 242 1.05
Llama-3.1-8B 2.82 2.18 1.02
Qwen2.5-32B 4.65 2.95 1.00 0.38
Llama-3.3-70B 4.42 2.97 1.00 0.16

Table 1: Dialogue quality comparison of user simulators
for the Monolithic architecture-based dialogue system
(using the model: Qwen2.5-32B), evaluated on Natural-
ness (N), Coherence (C), and Dialogue Diversity (D)
metrics using GPT-40. The Turing Test (TT) metric mea-
sures the percentage of dialogues from a random sample
of 50 that are judged as human-like, based on human
evaluation. Higher scores indicate better performance.

5.1.1 Analyzing the Role of User Simulators

Which LLMs produce the most effective and re-
alistic user simulation behavior in terms of dia-
logue naturalness and coherence? This question is
central to reliable evaluation (Pietquin and Hastie,
2013; Davidson et al., 2023; Sekulic et al., 2024) in
TOD, where systems rely on multi-turn interactions
to achieve user-defined goals.

To identify user simulators that show coherent
and natural behavior, we evaluate dialogue systems
of varying capacities (32B and 70B) paired with
simulators from the Qwen and LLaMA model fam-
ilies, (1B ~ 70B) on single-domain test dialogues.

We assess dialogue quality using both automatic
and human evaluations. For automatic evaluation,
we adopt the LLM-as-a-judge framework (Kazi
et al., 2024), using GPT-4o0 in a zero-shot setting
to rate generated user utterances. Results in Table 1
indicate that both naturalness and coherence gen-
erally improve with increasing model size, while
dialogue-level diversity remains relatively constant
(~ 1.0). These trends are corroborated by parallel
evaluations using the open-weight L1ama-3.3-70B
model as the judge (see Table 12).

To further validate these findings, we conducted
a “Turing Test” (see Appendix A.4) where an an-
notator chose the more natural dialogue between
an LLM output and its corresponding ground-truth.
This evaluation assesses the dialogues produced
by Qwen2.5-32B and LLaMA-3.3-70B relative to
ground-truth dialogues for the same task, focusing
specifically on perceived naturalness.

We developed a simple user interface (see Fig-
ure 5 in Appendix) that displays two dialogues side
by side, allowing annotators to select which dia-



logue appears more natural. In each comparison,
one dialogue is generated by either Qwen2.5-32B
or LLaMA-3.3-70B, and the other is the corre-
sponding ground-truth dialogue from the cor-
pus (Budzianowski et al., 2018).

As shown in Table 1, 19 out of 50 randomly sam-
pled dialogues generated by Qwen2.5-32B were
preferred (0.38) over the ground truth, compared
to 8 (0.16) from LLaMA-3.3-7@B. This result high-
lights Qwen2.5-32B’s strength in generating realis-
tic user behavior.

5.1.2 Robustness of Dialogue Systems to User
Simulator Variability

How robust are dialogue systems when interacting
with user simulators of varying capability and co-
herence? Although dialogue quality assessment
(in Section 5.1.1) provides insight into simulated
dialogues, it is also important to evaluate the ro-
bustness of dialogue systems to user simulators
for reliable evaluation. As shown in Table 2, the
overall performance of dialogue systems generally
is sensitive to the choice (and with this, as estab-
lished by Table 1, the quality) of the user simula-
tor, but to differing extents: The dialogue systems
realised with Qwen2.5-32B appear to be more ca-
pable of maintaining task success despite differ-
ences in simulator behavior. These systems can
recover from incoherent user turns and use clar-
ifying strategies to manage imperfect inputs and
maintain goal alignment. In contrast, task success
declines for LLaMA-3.3-70B when the user simula-
tor is too small or behaves inconsistently.

To quantify this effect, we introduce US-
spread, a robustness metric defined as the range
(maximum — minimum) of task success rates
achieved by a dialogue system when evaluated
across different user simulator models. A lower
US-spread indicates greater robustness against vary-
ing user behaviour. We observe that a monolithic
dialogue system based on Qwen2.5-32B achieves a
spread of 0.58 (see Table 2), while LLaMA-3.3-70B
has a slightly higher spread of 0.62. Based on these
findings, we recommend testing against a variety
of user simulator models and using US-spread to
assess robustness, during development.

While Llama-3.3-70B achieves the highest
task success rate overall as a user simulator,
Qwen2.5-32B closely matches its performance
across both automatic and human evaluations,
demonstrating strong task success, high natural-
ness, and competitive coherence. Given its signifi-

Qwen2.5-32B (DS)  Llama-3.3-70B (DS)
M MP ML M MP ML

Model (US)

Llama-3.2-1B 042 034 032 028 027 0.18
Llama-3.2-3B 075 055 085 062 040 0.62

Qwen2.5-7B 047 042 035 045 023 0.17
Llama-3.1-8B 077 055 080 0.67 032 0.62
Qwen2.5-32B 095 058 082 083 053 0.70
Llama-3.3-7¢B  1.00 080 093 09 053 080
User Spread 0.58 0.46 0.61 0.62 0.25 0.62

Table 2: Task success (booking) accuracy across differ-
ent LLM pairings as user simulators (US) and dialogue
systems (DS) in the clem: todd framework. Rows indi-
cate the models used as US, and columns show the DS
models evaluated in three architectural variants: Mono-
lithic (M), Modular-Programmatic (MP), and Modular-
LLM (ML). The bottom-most row (User Spread) reports
the standard deviation across user simulators for each
DS configuration, reflecting its sensitivity to variation in
simulator behavior. Lower User Spread values indicate
greater robustness, but should be considered alongside
overall task success.

cantly smaller model size, we select Qwen2.5-32B
as the user simulator for all subsequent experi-
ments, balancing performance with computational
efficiency.

5.1.3 [Evaluating Dialogue Systems

With the user simulator model fixed, we can now
systematically evaluate dialogue system realisation
strategies, and the model realising them. How do
different dialogue system configurations, varying
in model size, prompting strategy, and architectural
design, compare in terms of task success?

The clem:todd framework streamlines ex-
perimentation across models and configurations.
We assess systems using a wide range of
LLMs—spanning 1B to 70B parameters and model
families such as Qwen, LLaMA, and GPT. Our
objective is to identify how architectural choices
impact performance, and to what extent model size
influences outcomes.

As mentioned in Section 3, we evaluated three
different dialogue systems and the results are re-
ported in Table 3 based on standard metrics for
task-oriented dialogue (Budzianowski et al., 2018):
Inform (1), and Booking Accuracy (B) (Xu et al.,
2024), with Booking Accuracy used as the primary
indicator of end-to-end task success.

At smaller scales (1B—3B), all architectures per-
form poorly (Booking Rate ~ 0.05 ), highlighting
the limitations of small models for complex dia-



Model Monolithic Modular-Prog Modular-LLM Xu et al. (2024) Hudecek and Dusek (2023)
Inform  Booking  Inform  Booking  Inform  Booking  Inform  Booking  Inform Booking
Llama-3.2-1B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20
Llama-3.2-3B 0.05 0.05 0.0 0.0 0.02 0.02 0.0 0.0 0.20
Qwen2.5-7B 0.09 0.09 0.28 0.26 0.25 0.24 0.32 0.30 0.25
Llama-3.1-8B 0.20 0.18 0.0 0.0 0.08 0.06 0.12 0.09 0.28
Qwen2.5-32B 0.76 0.71 0.44 0.41 0.71 0.68 0.63 0.60 0.52
Llama-3.3-70B 0.70 0.69 0.43 0.43 0.53 0.52 0.12 0.12 0.32
GPT-40 0.82 0.81 0.65 0.65 0.85 0.84 0.75 0.73 0.42

Table 3: Performance of various dialogue system architectures within the clem: todd framework. The table presents
inform(I), and booking accuracy (B) for Monolithic, Modular-Prog, and Modular-LLM architectures across different
LLMs. Systems based on Xu et al. (2024) and Hudecek and Dusek (2023) are also evaluated within the clem: todd
setup. Larger models consistently yield better performance. Hudecek and Dusek (2023)’s system does not support

booking accuracy computation.

logue. We observe that a majority of conversations
were aborted prematurely due to models failing to
adhere to the expected response format constraints,
leading to incomplete task execution and signifi-
cantly lower task success rates.

At the other end of the scale, GPT-40 achieves
higher booking rates in modular configurations,
reaching ~ 0.84. In monolithic setups, most fail-
ures occur in train domain dialogues involving
leave after or arrival by constraints, where the
model often produces incorrect output formats (see
Appendix A.2.2), leading to database failures and
mismatches with ground truth goals. In contrast,
the structured decomposition in modular systems
helps the model reliably follow schema-specific
outputs, improving constraint handling and task
success.

In contrast, open-weight models perform bet-
ter in monolithic configurations, achieving book-
ing success rates around ~ 0.77, but show sig-
nificantly reduced performance in modular setups.
Most failures stem from invalid response formats
or prematurely signalling the end of conversation
without conversing about all the goals (see Ap-
pendix A.2.2). In modular configurations, the over-
all task is decomposed into subtasks, and individ-
ual modules operate without access to the full di-
alogue history. This limited context appears to
hinder the model’s ability to consistently satisfy
goal constraints, reducing task success. In mono-
lithic setups, a detailed analysis shows that these
models can reach booking rates as high as 0.95
(Qwen2.5-32B) for single-domain dialogues (see
Table 13 for the breakdown of results across do-
mains). However, their performance drops in multi-
domain scenarios due to increased complexity and
cross-domain goal tracking.

Model Monolithic Modular-Prog Modular-LLM
T($) F($) T($) F($) T($) F($)
Llama-3.2-1B 0.009  0.007  0.009 0.007 0.0008  0.007
Llama-3.2-3B 0.007 0466  0.007 0362 0.002 0.103
Qwen2.5-7B 0.096 0.091 0.010 0374 0.004 0.137
Llama-3.1-8B 0.219 0442  0.011  0.667 0.003 0.298
Qwen2.5-32B 0.007  0.173  0.059  0.487 0.009 0.258
Llama-3.3-7eB  0.218 0.502  0.020  1.333 0.007 1.358
GPT-40 0.019 NA 2.113 NA 0.031 NA

Table 4: Cost comparison of dialogue system archi-
tectures within the clem: todd framework. The table
reports token-based cost (T) and FLOPS cost (F), both
measured in USD ($) per dialogue, for Monolithic,
Modular-Prog, and Modular-LLM architectures across
different LLMs.

5.2 Evaluating Computational Efficiency of
Dialogue Systems

What are the computational cost patterns across di-
alogue system architectures and model scales? We
evaluated both token and FLOPs-based costs across
all the three configurations using a standardized es-
timation approach (Kaplan et al., 2020; Chowdhery
et al., 2023). More details on the cost computation
are available in Appendix A.6

It is important to note that token costs are
not solely determined by the number of tokens
used. They also depend on the pricing set by API
providers for each specific model. For example,
some providers offer significantly lower input/out-
put token prices for certain models, which can
reduce the apparent cost even if token usage is
high. Therefore, comparisons of token cost across
architectures should be interpreted with this pric-
ing variability in mind. While our cost estimates
use OpenRouter pricing at the time of writing as



Model Monolithic =~ Modular-Prog ~ Modular-LLM
Llama-3.2-1B 18.85 1.61 18.72
Llama-3.2-3B 5.21 8.32 16.56
Qwen2.5-7B 6.69 11.38 13.70
Llama-3.1-8B 5.97 11.16 42.08
Qwen2.5-32B 8.52 10.16 717
Llama-3.3-70B 25.33 34.07 47.98
GPT-40 4.10 8.61 4.37

Table 5: Latency time (in seconds) comparison across
dialogue system architectures in the clem: todd frame-
work. The table reports end-to-end response time for
Monolithic, Modular-Prog, and Modular-LLM architec-
tures evaluated across different LLMs.

a consistent baseline,* these values may differ in
production settings depending on the provider and
deployment context.

As shown in Table 4, the Monolithic architecture
has the lowest computational cost due to its single-
pass execution, avoiding repeated LLM calls. In
contrast, Modular Prog and Modular LLM incur
higher costs. Modular Prog has the highest FLOP
cost, up to $1.33 with L1ama-3.3-70B, ~ 2 times
more than its Monolithic counterpart, reflecting
poorly on efficiency.

Additionally, we computed the latency time for
each system, defined as the total time elapsed from
the first interaction initiated by the user simulator
until the task completion or the maximum num-
ber of dialogue turns (15) is reached. As shown
in Table 5, Monolithic systems exhibit the low-
est latency times across most configurations. This
is expected, as Monolithic systems involve a sin-
gle model call per turn, whereas the Modular-Prog
and Modular-LLM systems require multiple calls
to sub-modules, increasing overall latency. The
highest latency is observed for Llama-3.3-70B,
which was executed on two GPUs, suggesting that
model size and hardware configuration contribute
significantly to response time. Among the modu-
lar variants, Modular-LLM systems generally ex-
hibit higher latency than Modular-Prog systems,
which can be attributed to the overhead of using
an LLM as the dialogue manager in addition to the
other modules. In contrast, the lowest latency is ob-
served for L1ama-3.2-1B, which is primarily due
to early termination of many dialogues resulting
from format violations leading to fewer turns and
thus shorter overall latency.

These results underscore a key trade-off: modu-
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Figure 3: Trade-off between computational cost and
booking success across dialogue architectures. The x-
axis shows the FLOPs per token (computational cost),
and the y-axis shows booking accuracy (task perfor-
mance). Monolithic and Modular-LLM architectures
tend to achieve higher booking accuracy at lower or com-
parable cost compared to Modular-Prog.

lar architectures enhance interpretability and task
decomposition but at a significant computational
and token cost, especially at scale.

Further more, we want to analyse the trade-offs
(see Figure 3) between model scale and computa-
tional cost (e.g., API usage, FLOPs). Larger mod-
els like L1ama-3.3-70B and Qwen2.5-32B achieve
markedly higher task performance in both mono-
lithic and modular settings (e.g., Qwen2.5-32B
Monolithic: Booking Rate = 0.71). Among
variants, Modular-LLM strikes a favorable bal-
ance, delivering comparable performance (e.g.,
Qwen2.5-32B: 0.68 vs. 0.41 in Mod-P) while re-
ducing FLOP cost ($0.26 vs. $0.49). However,
modular systems incur higher inference overhead
due to multiple LLM calls per turn. This under-
scores a key trade-off: monolithic systems of-
fer inference efficiency but limited flexibility,
whereas modular systems support extensibility
and interpretability at greater computational
cost.

Overall, architecture selection should align with
application-specific priorities. Monolithic setups
are preferable when minimizing compute or API us-
age is critical. Modular architectures, particularly
Modular-LLM, offer a compelling compromise.

5.3 Evaluating the Adaptability of clem: todd
to New Domains

Can clem: todd be adapted to new domains and
data configurations? clem: todd retains the design
philosophy of the underlying “self-play” frame-
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Multiwoz-Style
1 S B 1 S B

Unrealistic
Model

Llama-3.2-1B 0.00 0.00 000 0.00 000 0.00
Llama-3.2-3B 0.18 0.08 0.18 0.03 002 0.02

Qwen2.5-7B 013 003 013 0.08 003 0.03
Llama-3.1-8B 026 0.08 026 0.08 003 0.07
Qwen2.5-32B 064 039 064 041 028 0.8
Llama-3.3-70B  0.54 024 054 020 0.11 0.07
GPT-40 0.68 038 064 060 035 033

Table 6: Performance of monolithic dialogue systems
evaluated for inform (I), success (S) and booking accu-
racy (B) with Qwen2.5-32B as the user simulator on the
MultiWOZ-style synthetic and unrealistic datasets.

work by separating the evaluation setup from the
definition of the test instances. This allows evalua-
tion with new instances (here, new goals), without
any changes to the underlying logic. To assess this
adaptability, we created two new synthetic datasets
(see Appendix A.7).

The first follows the MultiWOZ style but fea-
tures unseen goal combinations that do not appear
in the original dataset, while preserving task struc-
ture (see Appendix A.7). The second contains in-
tentionally unrealistic scenarios, such as booking a
dragon for travel to London, to test how systems
handle inputs that are likely to differ from any data
encountered during training.

We evaluated our proposed dialogue systems
using the new datasets, while keeping the experi-
mental configuration consistent with earlier evalu-
ations. Qwen2.5-32B is used as the user simulator
and we varied the dialogue system model. Table 6
shows that models exhibit closer task success for
the MultiWOZ-style data but struggled with unre-
alistic tasks.

When the user simulator poses uncommon re-
quests, such as booking a table for —2 people or
reserving a stay in a dungeon in the middle of the
ocean, the dialogue systems often attempt to cor-
rect. For instance, it flags the negative party (-
2) size as a likely typo, which the user simulator
adjusts, resulting in a deviation from the original
goal. Similarly, when handling unusual accommo-
dation requests, the dialogue systems steering the
user to consider more conventional hotel options.
These interactions, while human-like, differ from
the ground truth annotations, which leads to lower
task success scores. Among all models evaluated,
GPT-40 and Qwen2.5-32B able to accommodate
such unconventional requests to some extent.

Together, these results indicate that clem: todd
enables controlled evaluation on new data distri-
butions and supports robust testing beyond fixed
benchmarks. It provides a platform for analyzing
how dialogue systems handle unseen goals, detect
potential overfitting, and generalize to tasks outside
their training exposure.

6 Conclusion

We propose clem:todd a framework designed
for the systematic evaluation of LLM-based task-
oriented dialogue systems. By leveraging a struc-
tured self-play paradigm, clem: todd enables con-
sistent and modular assessment across diverse di-
alogue system architectures and user simulators.
Our experiments on standard (MultiwOZ) bench-
marks, demonstrate that while large-scale mono-
lithic models offer better performance at low com-
putational cost, modular architectures, especially
Modular-LLM variants, achieve reasonable trade-
offs between performance and efficiency. Further-
more, we show that clem: todd can be adapted to
evaluate dialogue systems in unseen and unrealistic
domains beyond fixed datasets.

Limitations

Although clem: todd offers flexibility and adapt-
ability, it has limitations that call for future research.
First, the design choice of using a simple, classi-
cal pipeline in our proposed modular dialogue sys-
tems was intended to assess LLM performance in
a controlled setting. However, the relatively lower
scores (for modular-program variant) may not re-
flect model limitations alone, but also limitations
of the pipeline design itself, which may be too
constrained to capture more complex dialogue be-
haviors. Second, our proposed setup assumes strict
adherence to response formats (as defined by the
Tool Schema), which smaller models frequently
violate. This leads to premature termination of dia-
logues and may underestimate the true capabilities
of such models. Third, our current evaluation in-
cludes only GPT-40 among closed-weight models,
limiting broader comparison with other proprietary
LLMs (Claude, Gemini etc.). Fourth, while the
current self-play setup is designed to be extensible,
it is limited to two-player interactions. Extending
the framework to support multi-agent dialogue sce-
narios is an open direction for future exploration.
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A Appendix
A.1 Prompt Templates

In the proposed tasks, LLMs are used in a variety
of roles across different dialogue system architec-
tures. Specifically, LLMs serve as user simulator
(see Figure 6), as a complete dialogue system (in
the monolithic architecture) (see Figure 7), as a
dialogue manager (in modular-LLM architecture)
(see Figure 8), and as a individual dialogue mod-
ules such as intent detector (see Figure 10), slot
extractor (see Figure 11), and response generator
(see Figure 12) in both modular-LLM and modular-
prog architectures.

Following standard prompting ap-
proaches (Brown et al, 2020; Wei et al,
2022; Liu et al., 2023a), all prompts were con-
structed in a zero-shot setting without the use
of explicit examples. Prompts were formatted
using a system-message (emphasizing the required
behavior) followed by a user-message structure.

While the specific content of the prompts varies
depending on the role and task (e.g., simulating
user intents, extracting slots, managing dialogue
state transitions), the overall prompt structure re-
mains consistent across all scenarios. Each prompt
is composed of the following components:
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1. System Message: Defines the role that the
LLM is expected to play (e.g., user simulator,
dialogue manager, slot extractor).

2. Task Description: Provides a brief overview
of the task context and the objective the LLM
should achieve.

3. Instructions and Rules: Specifies detailed
guidelines and constraints that the LLM must
follow when generating responses.

4. Test Input: The specific input query for which
a response is to be generated.

This prompt format ensures that models are con-
textualized for their assigned tasks while allowing
flexibility in content to accommodate the differing
requirements of user simulation, dialogue manage-
ment, and modular dialogue tasks.

A.2 Existing Systems Integration

As part of our benchmarking, we integrated two
representative task-oriented dialogue systems from
prior work into the clem: todd framework: Auto-
TOD (Xu et al., 2024) and the modular pipeline
proposed by Hudecek and Dusek (2023).

A.2.1 AutoTOD Integration

AutoTOD is a zero-shot, monolithic system, using
a LangChain-powered agent. In our integration, we
maintained AutoTOD’s internal logic for database
operations and booking reference number genera-
tion to maintain consistency with its original design.
However, we ensured that it operated over the same
MultiWOZ 2.2 database used for all other dialogue
systems in our framework, thus preserving fairness
in task execution and evaluation.

AutoTOD’s original implementation > uses an
older version of LangChain (v0.0.166), which re-
quired adjustments to ensure compatibility with
current LangChain APIs. The framework includes
two agent types: a ReAct agent and a function
agent. We initially attempted to use the ReAct
agent, but integration failed due to format mis-
matches between the LLM-generated outputs and
the expected tool call structure—an issue stemming
from changes introduced in newer LangChain ver-
sions. As a result, we integrated the function agent,
which was working under the upgraded environ-
ment.

https://github.com/DaDaMrX/AutoTOD

The function agent, however, expects LLMs to
generate raw SQL queries. This introduced some
issues, as the case of generated column names oc-
casionally did not match the schema of the under-
lying database. To address this, we modified the
database layer to support case-insensitive column
matching. Additionally, the booking function uses
regular expressions to extract timing information
in train booking scenarios. These expressions were
failing in some edge cases and we therefore up-
dated the relevant regex patterns.

In Table 7, we report the AutoTOD results from
the original paper. To enable fair comparison, we
reproduced the system in its original setup and
evaluated in two modes inspired by our clem: todd
experiments: first, by using the same model for
both the agent and the dialogue system, and sec-
ond, by using a single instruction-following model
Qwen2.5-32B as user model against other models
for dialogue systems. These results are presented
in Table 11.

Our analysis indicates that performance im-
proves when the same model is used across com-
ponents, as opposed to mixing models. Further-
more, when using Qwen2.5-32B based user sim-
ulator in our setup, the dialogue system outper-
formed its own setup, likely due to the improved
user simulator prompts provided by clem: toddWe
also observe a performance gap between the paper-
reported results and our reproduced results, which
is likely due to differences in agent configuration
during evaluation, the original paper might have
used the ReAct agent, whereas we used the func-
tion agent due to compatibility issues with newer
LangChain versions. This change in agent behavior
may have affected how tool calls were handled and
how robustly dialogue goals were completed.

A.2.2 Modular Pipeline System Integration

We integrated the modular pipeline dialogue sys-
tem proposed by Hudecek and Dusek (2023). The
system comes with its own implementation ¢ for
handling database interactions and generating book-
ing reference numbers. We retained these compo-
nents as is but ensured that the underlying database
matched the MultiWwOZ 2.2 version used across all
systems in clem: todd to maintain consistency.
The original implementation used delexicalized
responses, as their evaluation setup did not rely on
realistic user simulation. Since clem: todd requires

https://github.com/vojtsek/to-11lm-bot
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Domain Level

Dialogue Level

Model

Inform Success Book Combine Inform Success Book Combine
Llama-2-13B 0.37 0.29 0.32 0.34 0.29 0.23 0.27 0.27
Llama-2-70B 0.54 0.43 0.44 0.49 0.33 0.31 0.32 0.32
GPT-3.5-Turbo 0.63 0.53 0.51 0.57 043 0.46 0.48 0.46
GPT-40 0.85 0.59 0.87 0.79 0.80 0.47 0.82 0.72

Table 7: Domain-level and dialogue-level performance metrics (Inform, Success, Book, and Combine) that were

reported in the baseline paper (Xu et al., 2024)

Domain Level

Dialogue Level

Model
Inform  Book Combine Inform Book Combine

Llama-2-13B 0.00 0.00 0.00 0.00 0.00 0.00
Llama-2-70B 0.00 0.00 0.00 0.00 0.00 0.00
Llama-3.2-1B 0.36 0.00 0.13 0.27 0.00 0.08
Llama-3.2-3B 0.24 0.00 0.09 0.09 0.00 0.03
Qwen2.5-7B 0.11 0.00 0.05 0.04 0.00 0.02
Llama-3.1-8B 0.17 0.00 0.07 0.1 0.00 0.05
Qwen2.5-32B 0.11 0.00 0.05 0.05 0.00 0.03
Llama-3.3-70B 0.11 0.00 0.06 0.06 0.00 0.03
GPT-40 0.73 0.73 0.59 0.67 0.67 0.51

Table 8: Results of the baseline system on the filtered test set. We use the same model for both the user and agent.
As the results are based on a filtered subset, performance differs from the baseline but comparable for GPT-40.

Domain Level

Dialogue Level

Model
Inform  Book Combine Inform Book Combine

Llama-2-13B 0.00 0.00 0.00 0.00 0.00 0.00
Llama-2-70B 0.00 0.00 0.00 0.00 0.00 0.00
Llama-3.2-1B 0.40 0.00 0.13 0.23 0.00 0.07
Llama-3.2-3B 0.24 0.00 0.09 0.09 0.00 0.03
Qwen2.5-7B 0.11 0.00 0.05 0.04 0.00 0.02
Llama-3.1-8B 0.18 0.00 0.07 0.11 0.00 0.04
Qwen2.5-32B 0.11 0.00 0.05 0.05 0.00 0.03
Llama-3.3-70B 0.12 0.00 0.06 0.06 0.00 0.03
GPT-40 0.16 0.00 0.07 0.10 0.00 0.04

Table 9: Baseline system results using Qwen-2.5-32B as the user simulator and varying the agent model. The
performance drops significantly compared to using the same model for both user and agent, showcasing the

sensitivity of the dialogue system to the user simulator.

Inform Success BLEU
Model
ChatGPT-Zeroshot 0.47 NA 3.76
ChatGPT-Fewshot 0.68 NA 6.84

Table 10: Performance metrics (Inform, Success, and
Book) that were reported in the baseline paper (Hudecek
and Dusek, 2023)

naturalistic dialogue for interaction with LLM-
based user simulators, we modified the code to
disable delexicalization, allowing entity names and
values to appear directly in the system responses.
Additionally, their regular expression logic for ex-
tracting domains from user input did not generalize

well across all test cases, so we extended this pat-
tern to improve robustness.

The original system also used the Weights & Bi-
ases (wandb) framework for logging and tracking
experiments. As this was not essential for inte-
gration with clem: todd we removed these depen-
dencies during setup. Furthermore, the original
implementation did not compute booking success
as part of its evaluation, so we could not report
these results.

A.3 Response Format Issues

Despite explicitly defining constraints and tool
schemas for response generation, models do not



response confirms to
rules

Hello! I'm looking to book a train
ticket. Could you help me find a train
that leaves London Liverpool Street for
Cambridge on Tuesday after 13:307
Ideally, I'd like to book this for eight
people. Thank you!

{"status": "db-query", "details":
“London Liverpool

stination": "Cambridge",

uesday",

DATABASE RETRIEVAL RESULTS:

No matching data found in the
database for the given query.

(i) The model response do not have correct key-value pair for leaveat attribute

eaveat": {">=":
, "domain": "train"}}

response confirms to
rules

USER REQUEST: Hello! I'm looking for
a train that arrives in Ely by 13:30 on
Sunday. It should depart from
Cambridge. Can you help me find one?
Also, I'll need to book it for eight
people. Thanks!

Hello! I'm looking for a train that arrives in Ely by 13:30 on Sunday. It should
depart from Cambridge. Can you help me find one? Also, I'll need to book it
for eight people. Thanks!

{"next_subsystem": "intent_detector", "input_data": {"input": "Hello! I'm
looking for a train that arrives in Ely by 13:30 on Sunday. It should depart
from Cambridge. Can you help me find one? Also, I'll need to book it for
eight people. Thanks!"}}

subsystem response before processing: {"name": "detectintent",
"arguments": {"domain": "train", "intent_detection": "dbretrieval-request"}}

{"name": "detectintent", "arguments": {"domain": "train",
"intent_detection": "booking-request"}}

Invalid response type. <class 'json.decoder.JSONDecodeError'>. Expected
dict

(ii) Multiple function calls in the model response

Figure 4: Examples of invalid model responses due to format violations during dialogue system evaluation.

Model BLEU  Inform R H T

Llama-2-13B 2.43 0.30 0.18 1.00 025
L1lama-2-70B 0.58 0.30 0.18 1.00 025
Llama-3.2-1B 0.32 0.30 0.18 1.00 025
Llama-3.2-3B 0.33 0.30 0.18 1.00 025
Qwen2.5-7B 0.54 0.30 0.18 1.00 025
Llama-3.1-8B 0.49 0.30 0.18 1.00 025
Qwen2.5-32B 0.65 0.30 0.18 1.00 025
Llama-3.3-70B 0.58 0.30 0.18 1.00 025
GPT-40 0.73 0.30 0.18 1.00 025

Table 11: Few-shot results on the Multiwoz filtered test
set using the same model for both user and dialogue
system. Metrics include overall Inform, and domain-
specific scores for restaurant (R), hotel (H), and train (T).
Performance differs from the baseline due to filtering.

always adhere strictly to the specified formats. De-
viations from the expected response format often
lead to invalid outputs, resulting in parsing errors
or task execution failures, which ultimately reduce
the overall evaluation scores.

common types of invalid responses include incor-
rect key-value structures, missing required fields,
and multiple function calls when only a single func-
tion call was expected. Figure 4 illustrates such
invalid responses observed during evaluation.

A.4 Dialogue Quality Evaluation

To assess the quality of the generated user simulator
utterances, we follow the methodology outlined by
Kazi et al. (2024). Specifically, we use two models
in a zero-shot setting to score the utterances: a
closed-source model (GPT-40) and an open-weight
model (LLaMA-3.3-70B). The evaluation focuses
on three dimensions: naturalness (N), coherence
(C), and dialogue-level diversity (D). Naturalness
is rated on a scale from 1 to 5, while coherence
and diversity are rated on a scale from 1 to 3, with
higher scores indicating better performance.

To cross-validate these GPT-4o findings(see Ta-
ble 1), we conducted a parallel evaluation using
LLaMA-3.3-70B, and results are shown in Table 12.
The open-weight model exhibits similar trends, re-
inforcing the observations made with GPT-4o.

Dialogue diversity scores remain mostly stable,
typically around ~ 1.0, across different models
and architectures. This suggests limited variability
in simulator utterances. While task-oriented dia-
logues are inherently more constrained than open-
domain dialogues, real users often introduce a de-
gree of natural variation (Kim et al., 2023) through
paraphrasing, hesitations, and reformulations. The
relatively low diversity observed here implies that



Evaluate Dialogue Quality

evaldialoguequality User:
On the right, you willfind two dialogues. Your task is to select the dialogue
that feels more natural and conversational to you.

Thursday.

Please focus on the user's utterance. The system response is generated by an System:
automated system, which may vary in quaty — your goal s to judge which user
interaction feels more natural overal.

Please review both dialogues carefully and choose the one you believe is more natural. User:
Once you've made your selection, click the Next button to proceed.

Note: Atter clicking Next, you will not be able to return to the previous dialogues. can | please get a reference number?
Make sure you are confident in your choice before proceeding. System:

The dialogues are on your right g
with anything else?
User:

No that will be all . Thank you.
System:

| am looking for a train that departs cambridge after 21:00 on

What is your destination that you would like to go to?

I'm heading to Stansted Airport, | need to book for 2 people and

‘Sure thing. The reference number is WRAD7NNO. Can | assist

Thank you for using our service. Please have a great day.

User:

I'm looking for a train that departs from cambridge on thursday
after 21:00 to stansted airport. Can you help me find one?
System:

| found several options for you. The first train departs at 21:40,
another at 22:40, and the last one at 23:40. All have a duration
of 28 minutes and cost 10.10 pounds. Which one would you
like to book?

User:

I'd like to book the 21:40 train from cambridge to stansted
airport on thursday for 2 people. Can you please proceed with
the booking and provide a reference number?

System:

Your train from Cambridge to Stansted Airport on Thursday at
21:40 for 2 people has been successfully booked. Your
reference number is 6T4AUFE.

User:

Great, thank you so much.
System:

You are very welcome!

Figure 5: Web interface used for the Human Turing Test. Annotators were shown two dialogues side by side (a
generated dialogue and a ground-truth dialogue) and asked to select the one that appeared more natural.

Model Naturalness ~ Coherence  Dialogue Diversity
Llama-3.2-1B 3.90 2.90 1.00
Llama-3.2-3B 3.25 2.18 1.02
Qwen2.5-7B 2.55 222 1.12
Llama-3.1-8B 2.97 2.32 1.03
Qwen2.5-32B 4.87 3.00 1.00
Llama-3.3-70B 4.28 2.93 1.00

Table 12: Dialogue quality comparison of user simu-
lators for the Monolithic architecture-based dialogue
system (using the model: Qwen2.5-32B), evaluated on
Naturalness (N), Coherence (C), and Dialogue Diver-
sity (D) metrics using L1ama-3.3-70B. Higher scores
indicate better performance.

current user simulators may be overly deterministic,
potentially restricting the robustness of dialogue
systems trained with them. To address this, future
work should aim to develop user simulators that
balance fluency with controlled diversity, thereby
better approximating real-world conversational be-
haviors.

Human Evaluation To further investigate the
performance of the user simulator, we conducted a
Turing Test to compare generated dialogues against
ground-truth dialogues.

We recruited an annotator to perform the annota-
tion. The annotator did not have prior experience
in dialogue annotation but had general experience
with data labeling tasks. Detailed instructions for

the Turing Test were embedded within the web
interface (see Figure 5) to guide the evaluation pro-
cess. The annotation task involved evaluating 100
dialogue pairs and took approximately 150 minutes
to complete.

The results are summarized in Table 1 under
TT (Turing Test) metric. For each model, 50 gen-
erated dialogues were evaluated against ground-
truth dialogues. Out of 50 comparisons, 19 dia-
logues generated by Qwen2.5-32B were judged to
be more natural, while only 8 dialogues generated
by LLaMA-3.3-70B were preferred.

It is important to note that the human Turing
Test and the LLM-judge evaluation use fundamen-
tally different methodologies. The human evalua-
tion compares generated dialogues directly against
ground-truth dialogues for the same task, whereas
the LLM-judge evaluation scores each generated di-
alogue independently based on naturalness, coher-
ence, and diversity, without referencing the ground
truth. Although the results from the two evalu-
ations are not directly comparable, both indicate
that the dialogues generated by the Qwen2.5-32B
model tend to sound more natural.

A.5 Domain-specific Results

These domain-wise results provide a finer-grained
view of how model and system design choices
impact task completion across different dialogue
scenarios. Table 13 presents detailed booking
success rates for each model across different di-



Domain  Model Monolithic Modular-Prog Modular-LLM
R H T Avg R H T Avg R H T Avg
Llama-3.2-1B 0.00 0.00 000 0.00 000 000 000 000 000 000 0.00 0.00
Llama-3.2-3B 020 0.05 000 0.08 000 000 000 000 0.10 000 0.00 003
Qwen2.5-7B 000 000 030 010 070 050 020 047 045 025 020 030
Single Llama-3.1-8B 050 025 010 028 000 000 000 000 020 010 0.00 0.10
Qwen2.5-32B 1.000 090 095 095 080 050 045 058 095 075 075 082
Llama-3.3-70B  0.85  0.65 1.00 083 080 035 045 053 080 050 080 0.70
GPT-40 095 070 050 072 100 080 075 085 100 095 065 0.87
Domain ~ Model R-H H-T T-R Avg R-H H-T T-R Avg R-H H-T T-R Avg
Llama-3.2-1B 0.00 0.00 000 0.00 08 050 045 058 0.00 000 0.00 0.00
Llama-3.2-3B 000 0.00 005 0.02 08 050 045 058 000 000 0.00 0.00
Qwen2.5-7B 000 0.10 010 0.07 08 050 045 058 019 005 025 0.16
Multi Llama-3.1-8B 018 000 015 0.1 08 050 045 058 005 000 005 002
Qwen2.5-32B 071 045 060 059 024 015 025 025 059 050 055 055
Llama-3.3-70B 047 040 0.60 049 041 080 035 045 047 025 030 034
GPT-40 076 045 090 070 100 080 075 056 094 070 0.80 0.81

Table 13: Booking rates for each model across different dialogue system architectures (Monolithic, Modular-Prog,
Modular-LLM) and domains. “Single” refers to tasks within a single domain (Restaurant(R), Hotel(H), or Train(T)),
while “Multi” refers to tasks spanning multiple domains. Higher values indicate better task completion performance.

alogue system architectures (Monolithic, Modular-
Prog, and Modular-LLM) and task settings (Single-
domain and Multi-domain). For single-domain
tasks, the performance is reported separately for
Restaurant (R), Hotel (H), and Train (T) domains,
along with their average. For multi-domain tasks,
performance is reported for each domain pair
(e.g., Restaurant—-Hotel (R-H), Hotel-Train (H-
T), Train—Restaurant (T-R)), along with the cor-
responding average.

Across architectures, models generally achieve
higher booking rates on single-domain tasks com-
pared to multi-domain tasks, reflecting the in-
creased complexity introduced by multi-domain
interactions. For single-domain tasks, the major-
ity of failures are due to the model not adhering
strictly to the specified response format constraints.
For multi-domain tasks, in addition to format vi-
olations, several other issues contribute to perfor-
mance degradation. These include user simulator
occasionally terminating the conversation prema-
turely after completing only one task, and mod-
els assuming missing information (such as hotel
area or restaurant food type) that differed from the
ground-truth data, resulting in different booking
choices and thus reduced the overall scores.

A.6 Cost Estimation

We estimate computational costs across dialogue
system architectures and model scales by analyzing
both token-based and FLOP-based expenses. This
evaluation provides insights into the computational

trade-offs associated with different dialogue system
architectures.

We followed a standardized estimation method-
ology (Kaplan et al., 2020; Chowdhery et al., 2023)
to compute the number of tokens, floating-point
operations (FLOPs), and their associated costs.

Token Cost Computation Although all open-
weight models were run locally, token costs were
estimated using pricing information from Open-
Router APIs 7 to provide an indicative view of real-
world deployment expenses. The total token cost
(T) is computed as the sum of the prompt(p) and
response(r) token costs, using the respective input
(c;) and output (c,) pricing rates for each model:

T=(pxci)+(rxco)

Flop Cost Computation The FLOP cost (F) is
derived by first estimating the total number of
floating-point operations (FP) required to process
all tokens, using an estimate (Kaplan et al., 2020;
Chowdhery et al., 2023) of 2x the number of model
parameters per token. This value is then converted
into petaflops and priced based on a standard cost
assumption. Specifically, we assume a cost of
$0.05 per petaFLOP (¢, ), derived from an A100
GPU rental rate of approximately $2 per hour. This
allows us to estimate the computational overhead
of inference independently of specific deployment
hardware.

"https://openrouter.ai/models


https://openrouter.ai/models

Domain Model Restaurant ~ Hotel ~ Train Avg Domain Model Restaurant ~ Hotel = Train  Avg
Llama-3.2-1B 0.00 0.00 0.00 0.00 Llama-3.2-1B 0.00 0.00 0.00 0.00
Llama-3.2-3B 0.35 0.00 0.65 0.33 Llama-3.2-3B 0.00 0.00 0.10 0.03

Qwen2.5-7B 0.20 0.10 0.40 0.23 Qwen2.5-7B 0.05 0.05 0.05 0.05

Single Llama-3.1-8B 0.82 0.25 0.65 0.57 Single Llama-3.1-8B 0.20 0.05 0.15 0.13

Qwen2.5-32B 0.90 0.80 0.90 0.87 Qwen2.5-32B 0.10 0.50 0.25 0.28
Llama-3.3-70B 0.70 0.50 0.85 0.68 Llama-3.3-70B 0.05 0.05 0.20 0.10
GPT-40 0.80 0.60 0.90 0.77 GPT-40 0.15 0.80 0.40 0.45

Domain Model R-H H-T T-R Avg Domain Model R-H H-T T-R Avg
Llama-3.2-1B 0.00 0.00 0.00 0.00 Llama-3.2-1B 0.00 0.00 0.00 0.00
Llama-3.2-3B 0.00 0.00 0.05 0.02 Llama-3.2-3B 0.00 0.00 0.00 0.00

Qwen2.5-7B 0.00 0.00 0.10 0.03 Qwen2.5-7B 0.00 0.00 0.00 0.00

Multi Llama-3.1-8B 0.00 0.00 000  0.00 Multi Llama-3.1-8B 0.00 0.00  0.00  0.00

Qwen2.5-32B 0.35 0.35 0.35 0.42 Qwen2.5-32B 0.10 0.10 0.00 0.07
Llama-3.3-70B 0.30 0.20 0.70 0.40 Llama-3.3-708B 0.00 0.05 0.05 0.03
GPT-40 0.35 0.45 0.75 0.52 GPT-40 0.15 0.45 0.05 0.22

Table 14: Performance of monolithic dialogue systems
evaluated with Qwen2.5-32B as the user simulator on
the MultiWOZ-style synthetic dataset. Results are re-
ported for single-domain (Restaurant, Hotel, Train) and
multi-domain (Restaurant-Hotel, Hotel-Train, Train-
Restaurant) tasks. “Avg” denotes the average score
across the domains.

FP = 2 x model parameters
(p x FP) + (r x F'P)
1015
F' = Total PetaFLOPs X ¢, ¢

Total PetaFLOPs =

A.7 Synthetic Dataset Generation

To assess the adaptability and generalization capa-
bilities of the clem: todd framework, we created
two types of synthetic test datasets: one that mimics
the structure of the original MultiwOZ 2.2 bench-
mark but introduces unseen goal configurations,
and another that contains intentionally unrealistic
or adversarial dialogue tasks.

A.7.1 MultiwQZ-Style Synthetic Dataset

This dataset preserves the general structure and
domain constraints of MultiwOZ 2.2 (restaurant,
hotel, and train), but combines slot values and goals
in configurations not found in the original corpus.
The goal was to simulate unseen but similar tasks
to assess how well systems generalize.

To construct the MultiWOZ-style synthetic
dataset, we first collected the available slots for
each domain (restaurant, hotel, and train) and then
randomly generated novel combinations of these
slots. Each generated goal was checked to ensure
that the exact same combination of slot types and

Table 15: Performance of monolithic dialogue sys-
tems evaluated with Qwen2.5-32B as the user simu-
lator on the unrealistic synthetic dataset. Results are re-
ported for single-domain (Restaurant, Hotel, Train) and
multi-domain (Restaurant-Hotel, Hotel-Train, Train-
Restaurant) tasks. “Avg” denotes the average score
across the domains.

values did not exist in the original MultiwOZ 2.2
corpus, thereby guaranteeing the inclusion of un-
seen goal configurations. These synthetic goals
were then rendered into natural language using
templates. We generated a total of 120 task goals
to match the size of the baseline evaluation set,
comprising 60 single-domain and 60 multi-domain
dialogue tasks.

A.7.2 Unrealistic Synthetic Dataset

For the unrealistic dataset, we constructed a custom
ontology that retained the original slot names from
the MultiWOZ dataset, such as area, food, hotel
type, and travel day etc., but replaced their values
with unusual values. For example, area values in-
cluded “middle of ocean” and “top of volcano”,
hotel type included “dungeon” and “wormhole”,
food included “rotten” or “leftover”, and travel
days were set as “someday” or “yesterday”. Using
this ontology, we generated random combinations
of slot-value pairs and then rendered them into nat-
ural language goals using the same template-based
generation approach as the synthetic MultiwOZ-
style dataset. We created a total of 120 tasks, 60
single-domain and 60 multi-domain, to mirror the
scale of the baseline evaluation set. These tasks,
while structurally valid, were semantically unreal-
istic, allowing us to probe the dialogue systems’
behavior in the face of adversarial user requests.



TEMPLATE A.7.1

System Info

ROLE: You are a user simulator tasked with interacting naturally with a dialogue system.
TASK:

$goal

INSTRUCTIONS:

1. Communicate naturally by expressing preferences, asking clarifying questions, and making
decisions as needed.

2. Maintain a polite and conversational tone.

3. Respond strictly based on the dialogue system’s response. Do not add logic or interpretation
beyond what is explicitly stated in the TASK.

4. Ensure that names and terms remain exactly as provided in the input, without any added or altered
punctuation (e.g., do not add apostrophes, hyphens, or other symbols). Maintain strict adherence to
the original formatting.

5. When booking a train, exact time matches may not always be available. If the dialogue system
provides alternative options close to the desired time, the you should accept a suitable nearby
option that reasonably aligns with the goal.

6. Once the dialogue system completes the task and provides the reference number, reply with "DONE".
No additional text should follow/preceed.

7. Do not simulate or act as the dialogue system; only interact with it.

8. Keep responses concise and focused, avoiding unnecessary elaboration or overly conversational tone.

OUTPUT FORMAT

1. Interaction: Respond appropriately using only the dialogue system’s response and the
information under TASK.

2. Task Completion: Reply with "DONE"”. Do not add any customary comments (thank you, great etc.)

3. Use ’DONE’ only (without any prefix/suffix) to confirm task completion.

Lets begin

Figure 6: Prompt template for the User Simulator, specifying the task description, interaction instructions, and
response format guidelines.



TEMPLATE A.7.2
System Info

ROLE: You are a specialized booking assistant interacting with a human user through JSON
function calls using the provided tool schema. Your role is to process user requests and ensure
successful task completion while maintaining a professional, helpful tone. You are NOT allowed to
return free-form messages outside tool calls.

TASK:

Assist the user conversationally by:

1. Extracting key details needed for the task (e.g., domain, date, time, location).

2. Cross-referencing user-provided information with the database to find relevant matches.

3. If too many records are available, the database system returns only the first five. If the
required information is not available in the returned records, apply additional filters to narrow
down the results.

4. Generating responses to gather missing or unclear information or to provide the booking status.
5. For train bookings, if the database does not have trains available at the exact requested time,
clarify with the user whether they are interested in seeing the closest available options that best
match their query.

6. Consolidating all extracted and clarified details for booking finalization.

7. Keeping responses concise and focused, avoiding unnecessary elaboration or overly conversational
tone.

8. Do not assume any details; always ask the user for clarification when necessary.

INSTRUCTIONS:

1. Communicate naturally by expressing preferences, asking clarifying questions, and making
decisions as needed.

2. Maintain a polite and conversational tone.

3. Respond strictly based on the dialogue system’s response. Do not add logic or interpretation
beyond what is explicitly stated in the TASK.

4. Ensure that names and terms remain exactly as provided in the input, without any added or altered
punctuation (e.g., do not add apostrophes, hyphens, or other symbols). Maintain strict adherence to
the original formatting.

5. When booking a train, exact time matches may not always be available. If the dialogue system
provides alternative options close to the desired time, the you should accept a suitable nearby
option that reasonably aligns with the goal.

6. Once the dialogue system completes the task and provides the reference number, reply with "DONE".
No additional text should follow/preceed.

7. Do not simulate or act as the dialogue system; only interact with it.

8. Keep responses concise and focused, avoiding unnecessary elaboration or overly conversational tone.

OUTPUT FORMAT

1. Interaction: Respond appropriately using only the dialogue system’s response and the
information under TASK.

2. Task Completion: Reply with "DONE"”. Do not add any customary comments (thank you, great etc.)

3. Use ’DONE’ only (without any prefix/suffix) to confirm task completion.

Lets begin

$USER_SIMULATOR_UTTERANCE

Figure 7: Prompt template for the monolithic dialogue system, detailing the task procedures, interaction instructions,
and output format for user request processing via JSON function calls.



TEMPLATE A.7.3
System Info

ROLE: You are the dialogue manager for a specialized booking assistant bot and interact
through JSON function calls using the provided tool schema. Your role is to process user requests,
coordinate interactions with subsystems, and ensure successful task completion. You are NOT allowed
to return free-form messages outside tool calls.

TASK:

1. For each user request:

a. Determine appropriate flow based on user input and available information

b. Identify next required subsystem. Always use the exact subsystem names as specified in the tool
schema.

c. Prepare the necessary input data for that subsystem

d. For database queries and validating booking information, use the exact function names as specified
in the tool schema.

e. Do not generate any booking confirmation (reference number) on your own. Use the appropriate
function to validate the booking and to generate the reference number.

2. All responses must strictly adhere to the format. Include all required fields and the response
must be a valid JSON.

RESPONSE RULESS:

1. Use the most appropriate function call based on the user’s request and available data.

2. To interact between the sub-systems (intent detection, slot extraction, or response generation),
call the ‘processnextsubsystem‘ function.

3. To respond to the user, as a final message after coordinating with the dialogue sub-systems call
the ‘followup‘ function.

4. Similarly for booking action or database lookup, use the appropriate function from the tool
schema.

5. Every response MUST be a valid tool call (tool_call). Never respond with plain text.

6. Only one function call is allowed per turn. Never return multiple function calls in a single
response. If multiple actions are needed, handle them sequentially across turns.

USER REQUEST:

$USER_SIMULATOR_UTTERANCE

Figure 8: Prompt Template for the Modular-LLM Dialogue Manager, specifying task responsibilities, response
rules, and interaction guidelines for subsystem coordination.



TEMPLATE A.7.4
System Info

You are required to evaluate a task oriented dialogue on several metrics, including task
completion, naturalness, coherence and dialogue-level diversity. Alongside the dialogue, you are
also provided with a user goal which states the specific requirement of the user.

TASK:

Here is some detailed explanations for the metrics:

1. Task completion You should check whether each intention in the user goal is fulfilled in the
conversation. The task is completed ONLY if all the intentions are fulfilled. This would be a binary
metric and you should only response with Yes or No.

This would be a binary metric and you should only response with Yes or No.

2. Naturalness

This metric measures the resemblance to human.

In the dialogue, the user or the system could either be AI or human.

You should report a numeric rating from 1 to 5, where 5 represents most likely to be human.

You are required to evaluate the naturalness of both the user and the system.

Here are some more detailed guidelines for naturalness for your reference:

1: The speaker continuously repeat itself, typical robotic behavior. Or the speech is hard to
understand.

2: The speaker repeat itself occasionally, the vocabulary is limited, like a robot.

3: The speaker does not have repeated behaviors (unless for verifying information). Vocabulary is
enough to communicate effectively, speech is easy to understand. But I am confident that human rarely
speak like this.

4: The speaker is likely to be a human. There is rarely logical inconsistency. But from some details
I feel like the utterance is a bit weird and somewhat resembles AI.

5: Can not really tell if this is AI or human. Human could probably say the same thing in real life.

3. Coherence

This metric measures the logical consistency within a dialogue.

You should report a numeric rating from 1 to 3, where 3 represents the best coherence.

Here is some detailed guidelines for coherence.

a. Locally, the utterances are coherent/logical based on previous turns of conversations.

b. Globally, the utterances reasonably and logically adhere to achieving the initial user goal step
by step.

If both conditions a and b are satisfied, you should give a score of 3. If only one condition is
satisfied, you should give a score of 2. Report 1 if none of the conditions are satisfied.

4. Dialogue-level diversity

In addition to trying to achieve the initial goal, does the user introduce some reasonable deviations
from the normal conversation flow?

Give a score from:

3 (highest score): > 20% of the time (frequently deviate from normal flow of the conversation)

2: 0% < deviation frequency < 20% (Normal)

1 (lowest score): 0% (too artificial, maximizing information exchange)

Note that for naturalness and coherence, you need to evaluate both the user and the system.
For dialogue-level diversity, you only need to evaluate the user.

You should return 6 results in total, with the order of task completion, naturalness for the user,
natualness for the system, coherence for the user, coherence for the system, diversity for the user.
Each evaluation results should be separated by commas. For example, ’Yes,5,3,3,1,2’ will be a valid
response.

Please be strict on the format of your response. Do not include any other words like ’Sure!’, ’Here
is the result:’. Simply response with only the results.

The user goal is as following:
$user_goal

The dialogue to be evaluated is as following:
$dialogue

Figure 9: Prompt template for Dialogue Evaluation Task, describing detailed guidelines for assessing task completion,
naturalness, coherence, and dialogue-level diversity.



TEMPLATE A.7.5
System Info

ROLE: You are an Intent Detection system designed to classify user requests into predefined
domains and intents using the provided tool schema. You are NOT allowed to return free-form messages
outside tool calls.

AVAILABLE INTENTS:

For all intent detections, use these exact names:

booking-request: User wants to proceed with the booking.

booking-success: The booking was successful and has some booking number.
booking-failure: There is a failure in the booking.

dbretrieval-request: User is looking for some information.

dbretrieval-success: The data is fetched from the DB and the retrieval was successful.
dbretrieval-failure: There is a failure in fetching the data from the DB.
detection-unknown: If the input doesn’t fall into any of the above

~No o1l wN =

AVAILABLE DOMAINS:

1. Classify the request into only one of the following domains (choose the closest match):
* restaurant, hotel, train
2. Not all utterances can be categorized into a domain. In such cases, use "donotcare”.

TASK:
Analyze the provided input. Dialogue history is provided to understand the context

1
b
2. Classify the request into only one of the above predefined intents (the closest match) and domain
3. Return the detected intent and domain by using those exact names.
4. Do not add any other information or explanation or comments.

5. Every response MUST be a valid tool call (tool_call). Never respond with plain text.

6. Only one function call is allowed per turn.

INPUT:

$USER_SIMULATOR_UTTERANCE

\. J

Figure 10: Prompt template for the Intent Detection module, specifying task guidelines for classifying user requests
into predefined intents and domains.
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TEMPLATE A.7.6
System Info

ROLE: You are an Slot Extraction system designed to identify and extract key entities from
user requests to support downstream tasks using the provided tool schema. You are NOT allowed to
return free-form messages outside tool calls.

TASK:

1. Analyze the provided user request.

2. Identify and extract relevant slots (e.g., name, area, time, date, type of cuisine, number of
people, type of hotel) based on the task context.

3. Focus on extracting the most concise and precise values for each slot, avoiding unnecessary
descriptive phrases or additional words.

4. Return the extracted slots in a structured format.

5. Return only the formatted data—do not add explanations, comments, or additional information.

6. Only extract a slot if it is *xexplicitly mentioned*x in the user input. Do not infer, assume, or
hallucinate values based on common patterns or prior examples.

7. If a relevant slot is not present in the input, **omit it from the output entirely*x—do not
fabricate or guess.

8. When handling follow-up user requests, compare the new input to the dialogue history:

- If a slot was x*previously extracted** but the new input =**replaces or contradicts** it (e.g.,
rephrasing or simplifying),

then xxexplicitly resetx* that slot by setting its value to an empty string (e.g., ‘"area”: "").

- If the user is merely **adding new information*x (e.g., number of people, dates), do **not** reset
previous values—**preserve them*x.

RESPONSE RULES:

1. Use the most appropriate function call based on the user’s request and available data.
2. Every response MUST be a valid tool call (tool_call). Never respond with plain text.
3. Only one function call is allowed per turn.

USER REQUEST:

$USER_SIMULATOR_UTTERANCE

\.

Figure 11: Prompt template for the Slot Extraction module, outlining task instructions for identifying and extracting
structured key entities from user requests.



TEMPLATE A.7.7
System Info

ROLE: You are a Response Generation system responsible for crafting contextually appropriate
and concise replies based strictly on the provided input using the provided tool schema. You are NOT
allowed to return free-form messages outside tool calls.

TASK:

Given the input data (domain, intent, extracted slots, database (DB) information, and dialogue
history):

1. Generate a meaningful response:

a. If additional information is required to proceed, respond conversationally using direct and
focused phrasing.

b. If recommendations are provided in the DB:

* Ask the user to choose from the list of options.

* Clearly present all options to the user for selection. Do not decide on any recommendation yourself.
c. For train bookings, if the database does not have trains available at the exact requested time,
clarify with the user whether they are interested in seeing the closest available options that best
match their query.

2. Guidelines for Response:

a. Responses must be concise and to the point.

b. Avoid unnecessary elaboration or an overly conversational tone.

c. Do not generate or fabricate any information that is not explicitly present in the DB or provided
input.

d. If too many records are available, the database system returns only the first five. If the required
information is not available in the returned records, request the user for additional information to
narrow down the results.

e. Do not generate any booking confirmation (reference number) on your own.

f. If the input contains booking confirmation (reference number), share the same to user without any
changes.

g. Every response MUST be a valid tool call (tool_call). Never respond with plain text.

h. Only one function call is allowed per turn. Never return multiple function calls in a single
response. If multiple actions are needed, handle them sequentially across turns.

INPUT:

$USER_SIMULATOR_UTTERANCE

Figure 12: Prompt template for the Response Generation module, specifying task and response guidelines for
producing contextually appropriate and structured replies based on user input and dialogue history.



{
"type": "function”,
"function”: {

"name": "followup”

"description”: "Use this function to respond to the user with follow-up messages. This includes asking for missing
or unclear information, confirming details, sharing booking reference numbers, or continuing the dialogue
based on the current conversation state.”,

"parameters”: {

"type"”: "object”,
"properties”: {
"message"”: {
"type": "string",
"description”: "The response from the dialogue system to the user”
3
¥,
"required”: ["message”],
"additionalProperties”: false
}
3
Yo
{
"type": "function”,
"function”: {

"name": "retrievefromrestaurantdb”,

"description”: "Use this function to query the restaurant database and retrieve restaurants that match optional
filters such as area, pricerange, food (cuisine), or restaurant name. This function is typically used to find

available restaurant options before validating or making a reservation. Returns up to 5 matching restaurants,
or fewer if less than 5 matches are found.",

"parameters”: {

"type”: "object”,
"properties”: {
"area": {
"type": "string”,
"enum”: ["centre”, "north”, "east”, "west”, "south"],
"description”: "The area/location/place of the restaurant. Optional.”
1,
"pricerange”: {
"type": "string",
"enum”: ["cheap”, "moderate”, "expensive"],
"description”: "The price budget for the restaurant. Optional.”
1,
"food": {
"type": "string",
"description”: "The cuisine of the restaurant you are looking for. Optional.”
3,
"name": {
"type": "string"”,
"description”: "The name of the restaurant. Optional.”
3
},
"required”: []
}
3
3

Figure 13: Schema definition detailing parameters and constraints for querying the database and booking confirma-
tion (Part 1/6).




"type": "function”,
"function”: {
"name"”: "retrievefromhoteldb”
"description”: "Use this function to query the hotel database and retrieve hotels/guesthouses that match
optional filters such as area, pricerange, type, hotel name, internet, parking, or stars. This function
is typically used to find available hotel options before validating or making a reservation. Returns
up to 5 matching hotels, or fewer if less than 5 matches are found.”,
"parameters”: {
"type": "object”,
"properties”: {

"area": {
"type": "string”,
"enum”: ["centre”, "north”, "east”, "west”, "south"],
"description”: "The area/location/place of the hotel. Optional.”
3,

"pricerange”: {
"type": "string”,
"enum"”: ["cheap”, "moderate”, "expensive"],
"description”: "The price budget for the hotel. Optional.”

3,
"type”: {
"type": "string”,
"enum”: ["hotel”, "guesthouse"],
"description”: "What is the type of the hotel. Optional.”
3,
"name”: {
"type": "string"”,
"description”: "The name of the hotel. Optional.”
Bo

"internet": {
"type": "string”,

"enum": ["yes", "no"],
"description”: "Indicates, whether the hotel has internet/wifi or not. Optional.”
3,
"parking”: {
"type": "string”,
"enum": ["yes", "no"],
"description”: "Indicates, whether the hotel has parking or not. Optional.”
3,
"stars": {
"type": "object”,
"description”: "The star rating of the hotel. Optional.”,
"properties”: {
"operator”: { "type”: "string”, "enum”: ["=",6 ">="  "<="  U">" n<"] o}
"value": { "type": "string”, "enum": ["1", "2", "3" 6 "4" "5"] }
3,
"required”: ["operator”, "value"l],
"additionalProperties”: false
3

1,

"required”: []

Figure 14: Schema definition detailing parameters and constraints for querying the database and booking
confirmation (Part 2/6).




{
"type": "function”,
"function”: {
"name"”: "retrievefromtraindb”
"description”: "Use this function to query the train database and retrieve trains that match optional filters
such as destination, departure, day, arriveby, or leaveat. This function is typically used to find
available options before validating or making a reservation. Returns up to 5 matching trains, or fewer
if less than 5 matches are found.”,
"parameters”: {
"type": "object”,
"properties”: {
"destination”: {
"type": "string",
"description”: "Destination of the train. Optional.”
3,
"departure”: {
"type": "string",
"description”: "Departure location of the train. Optional.”
},
"day": {
"type": "string",
"enum”: ["monday”, "tuesday”, "wednesday”, "thursday”, "friday", "saturday”, "sunday"l,
"description”: "Journey day of the train. Optional.”
},
"arriveby"”: {
"type": "object"”,
"description”: "Arrival time of the train. Optional.”,
"properties”: {
"operator”: { "type": "string”, "enum": ["=", ">=", "<=", ">" "<"] },
"value": { "type": "string”, "pattern”: "~(0[0-9]|1[0-9]|2[0-3]):[0-51[0-91%",
"description”: "A time string formatted as HH:MM (24-hour format)."
3
3,
"required”: ["operator”, "value"l,
"additionalProperties”: false
1,
"leaveat": {
"type": "object”,
"description”: "Leaving time for the train. Optional.”,
"properties”: {
"operator”: { "type": "string"”, "enum": ["=", ">="  "<="  ">"  "<"] 3},
"value": { "type": "string", "pattern”: "*(@[0-9]1|1[0-9]1|2[0-31):[0-5]1[0-91%$",
"description”: "A time string formatted as HH:MM (24-hour format)."
3
3,
"required”: ["operator”, "value"],
"additionalProperties”: false
3
},
"required”: []
}
3
}

Figure 15: Schema definition detailing parameters and constraints for querying the database and booking
confirmation (Part 3/6).




{
"type”: "function”,
"function”: {

"name"”: "validaterestaurantbooking”,

"description”: "Use this function to check the availability of a restaurant based on user preferences such as
area, food (cuisine), pricerange, name, people, day, and time before proceeding with a reservation. This
function should be called to validate whether a booking can be made with the provided details. If the
details are accurate, it returns a booking reference number."”,

"parameters”: {

"type": "object”,
"properties”: {
"area": {
"type": "string",
"enum”: ["centre”, "north”, "east”, "west”, "south”],
"description”: "The area/location/place of the restaurant.”
},
"pricerange”: {
"type": "string",
"enum”: ["cheap”, "moderate”, "expensive"],
"description”: "The price budget for the restaurant.”
},
"food": {
"type": "string",
"description”: "The cuisine of the restaurant you are looking for."
},
"name”: {
"type": "string",
"description”: "The name of the restaurant.”
},
"phone”: {
"type": "string",
"description”: "Phone number of the restaurant. Optional."”
},
"postcode”: {
"type": "string”,
"description”: "Postal code of the restaurant. Optional.”
},
"address": {
"type": "string",
"description”: "Address of the restaurant. Optional.”
},
"people”: {
"type": "string"”,
"enum”: ["1", "2", "3",6 "4" "5" ‘"" "7" "8"],
"description”: "Number of people for the restaurant reservation.”
},
"day"”: {
"type": "string"”,
"enum”: ["monday"”, "tuesday”, "wednesday”, "thursday”, "friday", "saturday”, "sunday"],
"description”: "Day of the restaurant reservation.”
},
"time": {
"type": "string"”,
"pattern”: "~(@[0-9]|1[0-9]|2[0-3]):[0-5]1[0-9]%$",
"description”: "Time of the restaurant reservation, formatted as HH:MM (24-hour format)."
},
},
"required": ["food”, "area", "pricerange”, "name”, "people”, "day", "time"],
"additionalProperties”: false
3
}
}

Figure 16: Schema definition detailing parameters and constraints for querying the database and booking
confirmation (Part 4/6).




{
"type”: "function”,
"function”: {
"name"”: "validatehotelbooking”,
"description”: "Use this function to check the availability of a hotel based on user preferences such as area,
type (hotel/guesthouse), pricerange, name, internet, parking, stars, people, day and stay before proceeding
with a reservation. This function should be called to validate whether a booking can be made with the
provided details. If the details are accurate, it returns a booking reference number.",
"parameters”: {
"type": "object”,
"properties”: {
"area": {
"type": "string",
"enum”: ["centre”, "north”, "east”, "west”, "south”],
"description”: "The area/location/place of the hotel.”
},
"pricerange”: {
"type": "string",
"enum”: ["cheap”, "moderate”, "expensive"],
"description”: "The price budget for the hotel.”
},
"type": {
"type": "string",
"enum”: ["hotel”, "guesthouse"],
"description”: "What is the type of the hotel.”
},
"name”: {
"type": "string",
"description”: "The name of the hotel.”
},
"internet”: {
"type": "string",
"enum": ["yes", "no"],
"description”: "Indicates, whether the hotel has internet/wifi or not."”
},
"parking”: {
"type": "string",
"enum”: ["yes", "no"],
"description”: "Indicates, whether the hotel has parking or not."”
},
"stars": {
"type": "string",
"enum": ["1", "2", "3", "4" "5"],
"description”: "The star rating of the hotel.”
},
"people”: {
"type": "string”,
"enum": ["1", "2", "3", "4" "5" ‘"e", "7", "8"],
"description”: "Number of people for the hotel booking."
},
"day"”: {
"type": "string”,
"enum”: ["monday"”, "tuesday”, "wednesday”, "thursday”, "friday", "saturday”, "sunday"],
"description”: "Day of the hotel booking."”
3,
"stay": {
"type": "string”,
"enum”: ["1", "2", "3", "4" "5" ‘"", 6 "7" "8"],
"description”: "Length of stay at the hotel.”
3,
"phone”: {
"type": "string”,
"description”: "Phone number of the hotel. Optional.”
},
"postcode”: {
"type": "string",
"description”: "Postal code of the hotel. Optional.”
T
"address”: {
"type": "string",
"description”: "Address of the hotel. Optional.”
3
Yo
"required”: ["area"”, "pricerange”, "type"”, "internet"”,
"parking”, "name”, "stars”, "people”, "day”, "stay"],
"additionalProperties”: false
}
3
3}

Figure 17: Schema definition detailing parameters and constraints for querying the database and booking
confirmation (Part 5/6).




{
"type": "function”,
"function”: {

"name"”: "validatetrainbooking”,

"description”: "Use this function to check the availability of a train based on user preferences such as
destination, departure, arriveby, leaveat, day, people, and trainid before proceeding with a
reservation. This function should be called to validate whether a booking can be made with the provided

details. If the details are accurate, it returns a booking reference number.",

"parameters”: {

"type": "object”,
"properties”: {
"destination”: {
"type": "string",
"description”: "Destination of the train.”
U
"departure”: {
"type": "string",
"description”: "Departure location of the train.”
3,
"day": {
"type": "string",
"enum”: ["monday”, "tuesday”, "wednesday”, "thursday”, "friday", "saturday”, "sunday"l,
"description”: "Journey day of the train.”
3,
"arriveby": {
"type": "string”,
"pattern”: "~(0[0-91|1[0-91|2[0-3]1):[0-5][0-9]%"
"description”: "Arrival time of the train.”
5
"leaveat”: {
"type": "string",
"pattern”: "~(0[0-91|1[0-91|2[0-3]1):[0-5][0-9]%"
"description”: "Leaving time for the train.”
0
"people”: {
"type": "string”,
"enum”: ["1", "2", "3", "4",6 "5" ‘"",6 "7", "8"],
"description”: "Number of train tickets for the booking."
Dp
"trainid": {
"type": "string",
"description”: "ID of the train.”
3,
"price": {
"type": "string”,
"description”: "Price of the train journey. Optional.”
ih
"duration”: {
"type": "string",
"description”: "Duration of the travel. Optional.”
3
},
"required”: ["destination”, "departure”, "day", "arriveby", "leaveat”, "people”, "trainid"],
"additionalProperties”: false
3
}
¥

Figure 18: Schema definition detailing parameters and constraints for querying the database and booking
confirmation (Part 6/6).
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