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Abstract

In interaction, the establishment of reference
is a collaborative process involving the main
speaker and the addressee. Current work on vi-
sual natural language generation however min-
imizes interactivity and concentrates on the
complexity of the input. Here, we return to
some classical rule-based NLG algorithms, and
extend them minimally to achieve incremen-
tal referring behavior guided by the listener’s
non-verbal feedback in a visual domain. We
run a human evaluation study and show that
these algorithms create behavior that is effec-
tive, though not judged as human-like. An ad-
ditional, even simpler algorithm that generates
finer-grained instructions is shown to be even
more effective in ambiguous settings. We spec-
ulate that such simple algorithms can act as
teachers that can help neural models take a step
towards interactivity.

1 Introduction

In interactive settings, the establishment of refer-
ence to objects is a collaborative process, shaped by
the referrer as well as the addressee. Even though
this is by no means a new insight (e.g., Clark and
Wilkes-Gibbs (1986); Heeman and Hirst (1995)),
it is one that has moved outside the focus of much
current work on visual natural language generation,
which concentrates on the complexity of the input
(e.g., raw image data instead of symbolic represen-
tations of the visual context) and minimizes inter-
activity, even if the chosen name of the task, e.g.,
Das et al. (2017)’s “visual dialog” or Savva et al.
(2019)’s “embodied AI”, might suggest otherwise
(Benotti and Blackburn, 2021).

In task-oriented dialog, subdialogs emerge when
an instruction follower (IF) asks for clarification
in case they are unsure. Even when the IF does
not interact verbally, the instruction giver (IG) col-
laboratively guides the IF after giving an initial
instruction by iteratively providing feedback and
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Figure 1: Example for a task-oriented interaction in
shared visual space; cf. (Zarrieß and Schlangen, 2018).

additional information (Striegnitz et al., 2012). Fig-
ure 1 shows an example from a human-human data
collection.

Here, we investigate whether such non-verbal
user behavior can be used in combination with clas-
sical rule-based Referring Expression Generation
(REG) algorithms –– the Incremental Algorithm of
Dale and Reiter (1995); and Denis (2010)’ Refer-
ence Domain Theory –– for continuously providing
feedback to the IF in an object identification task.
We evaluate the resulting interactive algorithms in
human evaluations, and show that they create be-
havior that leads to high task success. Humans
evaluate none of the algorithms as human-like but
accept them as reasonably likeable, friendly and
competent. An additional, even simpler algorithm
that generates finer-grained instructions is shown
to be even more effective in ambiguous settings
and is slightly favored overall by participants.

We close with speculations on how such rule-
based systems that use symbolic input could be
used as data generators for more flexible learning-
based systems that combine robustness on the input
side with more natural grounding behavior.

2 Related Work

Incorporating non-verbal listener feedback into
REG systems has been the subject of previous stud-
ies. Especially eye gaze has been interesting to
investigate in this context as studies in psycholin-
guistics have shown that listeners attend to objects



in their visual environment as they are being re-
ferred to (Tanenhaus et al., 1995).

In task-oriented interaction data in the context
of the GIVE challenge (Byron et al., 2007), which
provided a 3D environment in which instruction fol-
lowers (IF) moved around, eye gaze has been found
to be a good predictor of what object the listener re-
solved a referring expression (RE) to (Engonopou-
los et al., 2013; Koleva et al., 2015; Staudte et al.,
2012). Koller et al. (2012) have integrated eye gaze
and movement information directly into their REG
algorithm to produce positive and negative feed-
back and found that eye gaze improves referential
success most but that also movement information
was useful compared to giving no feedback at all.
Both feedback systems reach high task success
rates but required interaction data from humans for
training. In our work, we want to investigate the
suitability of existing rule-based algorithms that
require no previous training data. Instead of eye
gaze data, we rely on positional information of the
listeners’ movement which has also improved task
success in Koller et al. (2012)’s experiments.

We will investigate two rule-based algorithms:
the Incremental Algorithm (IA) (Dale and Reiter,
1995) and an algorithm based on Reference Do-
main Theory (RDT) (Denis, 2010). While the IA
assumes the full context of objects to be available
when generating a RE, RDT includes a notion of
focus on subsets of objects and makes it suitable for
environments in which the listener’s view changes.
We carry out our experiments in a 2D environment
where the listener has access to the full set of ob-
jects and the IG – the REG algorithm – can “see”
what the IF is doing.

Models that account for the explicit collabora-
tiveness of reference have been proposed as well.
For example, Heeman and Hirst (1995) use a
planning-based approach that accounts for clari-
fication requests as modifications of the plan and
allows each partner to modify the plan – the refer-
ring expression – directly. We leave this extension
to future work.

More recently, researchers have attempted to
generate instructions and descriptions based on im-
ages, bypassing the need to create a symbolic rep-
resentation of the domain, and thus being able to
leverage the capabilities of modern neural network
models (Das et al., 2017; Savva et al., 2019). How-
ever, these efforts do not account for the collabora-
tive nature of reference even if the task names may

suggest otherwise (Benotti and Blackburn, 2021).
They instead separate the generation and evaluation
of reference from one another without allowing for
a collaborative modification of the generated RE.
Instructions however need to go beyond correct-
ness in that the description attempts to elicit the
desired behavior in the listener. In order to obtain
suitable data for training a neural network model,
we therefore need to make sure that the input lan-
guage data is both correct and suitable for the task.
We investigate whether rule-based algorithms are
a possible data generation mechanism by testing
their generated output in human evaluation in a
domain that we can access in both symbolic and
continuous format.

3 Rule-based collaborative instructions

For this research, we adapt and extend the Incre-
mental Algorithm (IA) (Dale and Reiter, 1995)
and the Reference Domain Theory (RDT) (Denis,
2010), and set up an additional algorithm called
Supervised Exploration (SE), which we explain in
this section. All algorithms generate an initial refer-
ring expression based on the current visual context
and then continuously monitor user behavior to pro-
vide continuous feedback to the IF. All three imple-
mentations are available at https://github.
com/kfriedrichs/golm/tree/ba.

In order to select an object from the set, the
instruction follower moves towards the object via
a gripper – a cursor that can be controlled using
the keyboard. This movement constitutes the user
behavior that each algorithm bases its feedback on.
After the initial RE, each system monitors gripper
movement and generates either positive or negative
feedback (YNFEEDBACK), or, when no movement
has happened for a certain time, an adjusted RE
(a new GENERATERE event) depending on the
specific algorithm.

Each system monitors the gripper movement as
well as the time to detect idle times. When the
gripper has moved three grid units, YNFEEDBACK

is generated based on the movement with respect to
the target object. When the gripper has moved less
than three units in 10 seconds or the participant has
gripped an incorrect object, a new GENERATERE
instruction is produced.

Algorithm 1 shows pseudocode for the general
procedure that was used to instantiate each specific
algorithm and the following feedback mechanism.

https://github.com/kfriedrichs/golm/tree/ba
https://github.com/kfriedrichs/golm/tree/ba


Algorithm 1 Event-driven feedback mechanism.
In the experiments, we set: Timeout=10sec, Threshold=3 units on grid, MaxTries=3

1: procedure ON NEWTASKEVENT

2: GENERATERE // IA, RDT or SE

3: end procedure
4: procedure ON GRIPPERUPDATEEVENT

5: if TargetGripped or MaxTriesReached then // Skip to the next configuration when the
6: NEWTASKEVENT . . . correct object was picked or after 3 tries.
7: else if IncorrectSelection then
8: THATWASINCORRECT

9: GENERATERE // repeat/rephrase
10: else if MovedPastThreshold then // When the gripper has moved in one direction
11: YNFEEDBACK . . . for a certain distance, give feedback.
12: end if
13: end procedure
14: procedure ON TIMEOUTEVENT // If nothing has happened for too long
15: if Gripper moved since Timeout/2 then // If the gripper has moved recently
16: YNFEEDBACK . . . give feedback
17: else
18: GENERATERE // repeat/rephrase
19: end if
20: end procedure

3.1 Incremental Algorithm

We implement the Incremental Algorithm (IA) as
described in (Dale and Reiter, 1995) and extend it
by the feedback loop as described above. The IA
assumes a preference order of available properties
that is known to influence the performance of the
algorithm (van Deemter et al., 2012). We set the
order to color–shape–location based on human RE
from existing corpora in the same domain (Zarrieß
et al., 2016). The IA will repeat its initial instruc-
tion in the case of a new GENERATERE decision.

The algorithm works as follows. It starts with
all entities except the target as the contrast set and
iterates through the given preference order of at-
tributes. Each property that the current target has
and that rules out some competing entity is immedi-
ately added to the RE, reflecting the greedy strategy.
Ruled out entities are removed from the contrast
set. The expression is complete and returned as
soon as all distractors have been eliminated and the
set is empty.

The YNFEEDBACK function is implemented here
as a random selection from a fixed set; negative
feedback is one of [“Not this direction”, “Not
there”, “No”], positive feedback is one of [“Yes,
this direction”, “Yes”, “Yeah”, “Yes, this way”].

3.2 Reference Domain Theory

We implement a version of the algorithm based on
Reference Domain Theory (RDT) as described in
(Denis, 2010). RDT dynamically creates reference
domains from the available object properties and
accounts for discourse salience once a RE has been
introduced as well as listener focus once the IF
starts moving. This allows the algorithm to pro-
duce underspecified expressions like one-anaphora.
We use the gripper movement to account for the
listener’s focus. The order of properties is set to be
the same as for the Incremental Algorithm. Note
that RDT uses an additional notion of location in its
feedback generation: aside from the regular loca-
tion property describing an object’s global position,
feedback may specify the position relative to the
IF’s gripper. Table 1 shows an example for how fo-
cus is used to dynamically generate underspecified
RE with the RDT algorithm.

3.3 Supervised Exploration

The Supervised Exploration Algorithm (SE) gen-
erates instructions that are underspecified. It only
verbalizes location information and then relies on
guiding the IF using continuous feedback without
verbalizing any further properties. Since this al-
gorithm never produces a full RE, it continuously



Algorithm 2 Pseudocode of the feedback loop of the Supervised Exploration algorithm. The general
feedback behavior in Algorithm 1 is extended by an additional check for whether the gripper is close to
the target.

1: if InXRange(TARGET) and InYRange(TARGET) then // If the gripper is close to the target
2: return TAKE(TARGET) . . . issue an instruction
3: else if MovingInRightDirection then // If the gripper is moving
4: return POSFEEDBACK . . . issue positive and negative
5: else if MovingInWrongDirection then . . . feedback based on its direction
6: return NEGFEEDBACK

7: else if IDLE and InXRange(TARGET) then // If the gripper is still but close to
8: return MOVE(y) . . . the target on one axis, issue
9: else if IDLE and InYRange(TARGET) then . . . an instruction for the other axis

10: return MOVE(x)
11: end if

Task 2: There are multiple blue “W”s on the
board. The leftmost is the target piece.

Agent: Select a blue W in the bottom.
User: moves the gripper towards the

incorrect objects on the right
Agent: Not these ones. Get the blue W in the

bottom of the board and left of the
gripper.

Table 1: Possible interaction between the RDT agent
and a user. The user’s gripper movement is used to
model their focus, enabling the algorithm to generate
the bold-faced underspecified instruction. At the time
of the second message, only non-target objects matching
the initial ambiguous instruction are in the user’s focus,
therefore “these ones” suffices as a description of the
negated objects.

checks whether the gripper has already reached its
correct position along one of the axes to generate
an additional STOP message.

The method is motivated by observations of
human-human interactions that achieve object iden-
tification without the use of full REs. In some in-
stances, the IF took a trial-and-error approach, con-
tinuously trying to guess the next referent or action
and consequently receiving feedback from the IG.
With this new algorithm, we explore a feedback-
only reference strategy for an artificial instruction
giver.

SE solely uses location as an attribute. Initially,
it generates an instruction to move in one direc-
tion, starting with the x-axis. During the feedback
loop, moving towards the target is supported by
positive feedback, moving away is encountered by
negative feedback, using the same fixed phrases as

IA. Once one coordinate is in the target’s range,
“Stop” is output, followed either by a direction for
the remaining axis or by the instruction to select the
object. Since stopping the gripper is time-sensitive
in order to not move past the object, SE uses an
additional feedback trigger activated by the gripper
entering the target range on one axis. Pseudocode
for the algorithm’s feedback loop is shown in Al-
gorithm 2.

3.4 Example and comparison of the
algorithms

Our domain is an online puzzle game in which Pen-
tomino shapes have to be selected from a board of
many pieces. Figure 2 shows an episode in which
the three algorithms vary in their initial instruc-
tions.

The difference between IA and RDT is subtle
and arises because the available attributes (shape,
color and location) do not suffice for a discriminat-
ing description – two Pentomino pieces match the
phrase “red U in the bottom left”. Following (Dale
and Reiter, 1995), this situation causes a failure
of IA. In our experiment, we still used the final
expression, which includes all features, for an in-
struction. Since IA assumes a discriminating RE,
a definite article is used. RDT on the other hand
acknowledges that the description is ambiguous by
inserting the indefinite article to create an explicitly
underspecified RE.

The feedback behavior of each algorithm is
showcased in the same Figure 2. RDT clearly
provides the most detailed feedback: at step 1,
all algorithms reinforce the IF’s moving direction,
but RDT also provides a RE with the additional
location-relative-to-gripper attribute. Still at 1, a



IA RDT SE
0 Initial state

Take the red U in the bot-
tom left.

Take a red U in the bottom left. Go a bit left.

1 Yes. Yeah. A red U in the bottom left
of the board and below left of the
gripper.

Yes.

No movement for 10 seconds.
Take the red U in the bot-
tom left.

Look for a red U in the bottom left. Go a bit left.

2 Stop. Go a bit down.
3 Not there. Not this one. Look for another one. No. Go a bit right.

The user selects an incorrect object.
4 That was incorrect. Take

the red U in the bottom
left.

That was incorrect. Look for a red
U in the bottom left.

That was incorrect. Go a
bit right.

5 Stop. Go a bit down.
6 Take this object.

The user selects the correct target object.

Figure 2: Example episode including initial instructions (0) and the feedback (starting at 1) given by each algorithm.
The gripper was moved along the arrows. At 1, the gripper was halted until the feedback timeout triggered. At 4, an
incorrect object was selected. The SE algorithm continuously monitors whether the gripper gets close to the target
to issue a STOP message.



new GENERATERE action features a full instruc-
tion for all algorithms by definition. Step 3 demon-
strates RDT’s strength: using one-anaphora, the
algorithm acknowledges the presence of identical
objects and tries to disambiguate them based on the
IF’s focus. At step 4, all algorithms output “That
was incorrect” followed by a GENERATERE action
as before.

The example also shows the increased feedback
frequency of SE. At steps 2, 5, and 6, the grip-
per gets close to the target on at least one axis,
triggering an instant “Stop” or “Take this object”
response of the agent.

Note that there might be more feedback mes-
sages from each algorithm depending on the move-
ment speed of the gripper, typically at least another
YNFEEDBACK between 4 and 6.1

4 Experiments

4.1 Method and Procedure

We designed an interactive object identification task
in which participants see a playing board online in
their browser. The board contains 50 Pentomino
puzzle pieces on a 40x40 grid. The pieces can have
one of 12 different shapes and 8 different colors
and can be rotated and mirrored. Figure 2 shows
an example. We design 12 different episodes, one
for each of the 12 different Pentomino shapes as
target piece. Each participant sees all 12 episodes
in the same order.

In order to select pieces, participants use the
arrow keys on their keyboard to move a gripper de-
picted by a cross. The gripper is initially positioned
in the center of the board for each new episode and
can be moved in steps of 0.5 units of the visible
grid. In order to select a piece when the gripper
touches it, participants use their space or enter key.

We create 6 hard and 6 easy configurations. In
the easy configurations, the target piece has at least
one unique property. In the hard configurations,
more than one piece will match the initial instruc-
tion, even when all attributes are specified. We
achieve this by placing copies (or rotated copies,
as rotation is not used as an attribute here) of the
target next to the target piece (cf. Figure 2 for an
example hard episode). We generate instructions

1Apart from the user’s speed in moving the gripper, the
movement speed also depends on the fire rate of keyboard
events. Since the setting did not allow us to control the system
setup of each participant, we acknowledge there might have
been some variance.

in English, using each of the three algorithms de-
scribed in Section 3. The instructions are generated
offline for each configuration and synthesized using
the Amazon Polly TTS standard Matthew voice.2

Each participant was randomly assigned one of
the algorithms. The data collection starts with an
audio test in which the participant is asked to tran-
scribe a phrase that they hear in order to ensure that
they could play audio in their browser. Participants
are then presented a trial episode in which they
could familiarize themselves with the interface.3

We log each gripper movement and instruction
event in a json format. Timestamped logs are sent
to our self-hosted server at the end of the interac-
tion. We use the logged information to derive the
following metrics:

Number of incorrect attempts for each episode.
The maximum number of trials in each episode
is 3, which the participants were informed about
during the training episode. After the third trial, the
participant sees the next configuration regardless
of success. A value of 2 or fewer incorrect attempts
reflects task success.

Time to solve an episode in seconds, starting at
the end of the initial spoken instruction until the
correct grip or third grip.

Number of feedback messages for each episode,
i.e. how many times the algorithm verbally reacted
to a participant’s behavior.

Subjective ratings using 7-point Likert scales in
a post-task questionnaire to measure participants’
perception of the agent. Throughout the data col-
lection, the voice was referred to as “Matthew” in
order to give the agent an identity.

4.2 Results and Discussion

We collect a convenience sample as part of a stu-
dent project, recruiting primarily university stu-
dents via email. Participants were unaware of the
specific research question. They did not receive
reimbursement, but participated in order to support
the project. Participation was anonymous.

91 subjects participated. Data from 1 participant
was removed because they did not pass the audio
test. Of the remaining 90 participants, 43 were
female, 41 male, 2 non-binary and 4 did not report,

2https://aws.amazon.com/polly/
3The data collection interface is available at https://

github.com/clp-research/golmi.

https://aws.amazon.com/polly/
https://github.com/clp-research/golmi
https://github.com/clp-research/golmi


Algorithm Success Rate # Failed attempts # Feedbacks Task length # Episodes
all easy hard all easy hard all easy hard all easy hard all easy hard

IA 0.94 0.96 0.92 0.52 0.19 0.85 3.46 2.56 4.35 11.59 10.07 13.10 331 164 167
RDT 0.93 0.95 0.90 0.58 0.27 0.89 3.07 2.73 3.41 12.91 11.25 14.57 351 174 177
SE 0.95 0.95 0.95 0.29* 0.33 0.24* 5.93* 6.18* 5.68* 14.98* 15.58* 14.37 384 192 192

Table 2: Summary of results by episode type. The task ends when the correct piece is gripped or after 3 attempts.
The task is successful if there were 2 or fewer failed attempts. Task length is reported in seconds. *indicates a
statistically significant difference between the result for SE and both IA and RDT (ind.t-test, p<0.001).

Dimension IA RDT SE
machine-like – human-like 2.43 2.67 2.75
incompetent – competent 4.29 3.40 4.81
dislike – like 4.25 3.73 4.28
unfriendly – friendly 4.46 4.40 4.97
unpleasant – pleasant 4.29 3.63 4.25

Table 3: Results from the post-task questionnaire. All
scales ranged from 1 to 7 in the order of the specified
adjectives. NIA = 28, NRDT = 30, NSE = 32.

the mean age was 29.95 (5 did not report). 28 runs
were collected for IA, 30 for RDT and 32 for SE.
Each run consists of 12 episodes as described in
the previous section. We removed single episodes
from the data when the gripper stood still for 20
seconds or longer, assuming that the participant had
abandoned it, resulting in a total of 331 episodes
for IA, 351 episodes for RDT and 384 episodes for
SE.

The results are summarized in Tables 2 and 3.
All three algorithms achieve similarly high success
rates overall as well as for the easy episodes. In the
hard episodes, SE performs best. Participants inter-
acting with IA were fastest in all settings and over-
all slowest with SE. Figure 3 additionally shows a
more detailed visualization of failed attempts for
each algorithm and setting.

The most striking differences between the three
methods can be seen when looking at the num-
ber of failed attempts and the number of feedback
messages participants received. Participants had
a maximum of 3 attempts to identify the target
object before they would see the next, unrelated
episode. Overall, participants needed about half as
many attempts with SE (0.29) compared with RDT
(0.58) and clearly fewer than IA (0.52). However,
this differed distinctly when separating easy and
hard episodes. In easy episodes, participants with
IA needed fewer attempts than both RDT and SE.
In hard episodes, participants needed more than
three times as many attempts with both IA and
RDT as with SE. Unsurprisingly, participants re-
ceived many more feedback messages with SE in

Figure 3: Incorrect choices made for each algorithm.

all settings since SE evaluates the position of the
gripper continuously rather than only after a certain
distance (cf. Section 3.3).

Each participant interacted with only one algo-
rithm, which makes direct comparison impossible.
Instead, we asked for their subjective ratings as
summarized in Table 3. All algorithms’ output was
rated as rather machine-like. Despite the under-
specified instructions and high number of feedback
messages, SE was rated as most competent, like-
able, and friendly, with IA close in scores. None
of the score averages surpass 5 on a scale up to 7,
so a lot of room for improvement exists. Note that
many factors can influence this rating, including
the particular voice and feedback verbalization.

Based on these results, movement and timing
information are appropriate indicators of the IF’s
reference resolution in this particular domain. Even
without testing different timing settings, the suc-
cess rate is high for all settings, showing that the
instructions and feedback are interpretable. The
results also give an indication on the level of perfor-
mance we can expect in easy vs. hard settings and
serve as a baseline for comparison when training a
model using raw image data as input. The success
rate when considering only the participants’ first
guesses differs greatly between these two settings
for the IA and RDT algorithms; both achieve about
twice the success rate in easy vs. hard configura-
tions.



5 Conclusion

We have shown how rule-based REG algorithms
can be enhanced with timing- and movement-based
feedback to increase referential success, especially
in ambiguous configurations, and without having
to generate spatial relations between objects. The
success rates give us a baseline for generating such
RE based on raw image data, without access to ab-
solute property values. As seen in Figure 3, these
baselines differ for the three algorithms depending
on the particular configuration of objects. For un-
ambiguous settings, instructions given by all algo-
rithms were picked on first try in most of the cases,
while the success rate dropped visibly for ambigu-
ous settings when IA and RDT gave an instruction.
This is important for using these instructions as
input for other learning mechanisms.

Our tool (mentioned in Section 4.1) lets us eas-
ily convert the symbolic visual game boards into
images, making it suitable to compare the exact
same settings with neural network models and gen-
erating the necessary amount of unbiased object
configurations as training data. Instead of letting
human annotators formulate instructions that po-
tentially vary significantly in their verbalizations,
we will use the rule-based algorithms to generate
the training instructions we have tested with users
in this paper.

6 Limitations

We acknowledge that the sample of participants is
small and there is no guarantee that participants
have focussed on the task at all times. We have re-
moved outliers where the gripper stayed idle for a
long time as explained in Section 4 but participants
carried out the interaction in the environment of
their choice rather than in the lab where they could
have been supervised. Only 5% of participants
reported to be native speakers of English. The re-
mainder self-reported a mean fluency of 5.26 on
a scale from 1 (“limited fluency”) to 7 (“full flu-
ency”).
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A Material

Figures 4 and 5 shows example episodes. Figure 6
shows the initial screen that participants saw when
starting the data collection interface. Demographic
questions in the post-task questionnaire were vol-
untary.

Figure 4: An example easy episode. The target object is
circled, the gripper is positioned in the center.

Figure 5: Example of a hard episode. The target object
is circled, the gripper is positioned in the center.
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Figure 6: The welcome screen of the data collection.


