
8 Reproducing an experiment
in automatic disfluency
detection

Frank Grimm1, David Schlangen2, Julian Hough2, Philipp Cimiano1

1 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction
Technology Excellence Center (CITEC), Bielefeld University

2 – Dialogue Systems Group, Faculty of Linguistics & Cognitive Interaction Tech-
nology Excellence Center (CITEC), Bielefeld University

Abstract
In this chapter, we describe an effort to reproduce the main results of the pub-
lished paper “Joint, Incremental Disfluency Detection and Utterance Segmen-
tation from Speech” [1], published as part of the proceedings of the “European
Chapter of the Association for Computational Linguistics” (EACL) in 2017. The
paper focuses on the task of disfluency detection and utterance segmentation
and proposes a simple deep learning system that processes dialogue transcrip-
tions and Automatic Speech Recognition (ASR) output. For this purpose, the
Dialogue Systems Group (DSG) at Bielefeld University developed a library that
relies on a data model for live ASR data that combines timing and textual
information. It utilizes a refined text corpus of open data to demonstrate the
feasibility of the system for simultaneously detecting disfluencies and segmenting
the individual utterances for use in conversational systems and similar speech re-
lated tasks. The code and data for this reproducibility experiment are available
at https://gitlab.ub.uni-bielefeld.de/conquaire/deep_disfluency.

Keywords
Linguistics, Speech Recognition, Python, Machine learning, LSTM, HMM, RNN,
NLTK, Theano, Keras

8.1 Introduction
The Dialogue Systems Group at Bielefeld University, located at the Faculty of
Linguistics and Literary Studies and the Cluster of Excellence Cognitive In-

97

https://gitlab.ub.uni-bielefeld.de/conquaire/deep_disfluency

8 Reproducing an experiment in automatic disfluency detection

teraction Technology (CITEC), studies artificial conversational systems. The
deep learning based disfluency detection system presented in their paper at the
International Conference of the European Chapter of the Association for Com-
putational Linguistics (EACL) aims to improve existing solutions in the field
of psychiatric health care delivery by introducing the capability to work on live
data. This can facilitate the detection of word repairs for human conversational
partners and improve turn taking during dialogues. While currently established
systems might make use of disfluency markers in text and segment dialogues into
individual utterances already, this is often restricted to processing data offline.
As such, a new artificial dialogue system could for example be employed during
interview sessions in order to ensure that protocols are followed. They can also
augment and assist the human interviewer, since artificial conversational agents
have been shown to exhibit many different markers that can be interpreted as
psychological distress, such as filled pause or speech rates, as well as other tem-
poral, utterance, and turn-related interactional features [2]. In offline processes,
analysing transcripts of such sessions today is often costly and frequently relies
on a disconnected utterance segmentation process. In the paper ‘Joint, Incre-
mental Disfluency Detection and Utterance Segmentation from Speech’ [1], a
more cost-effective process is developed, commencing with directly processing
speech data and working with online data as it incrementally becomes available
during a conversation. The authors evaluate the full process through multi-
ple metrics to capture how each subtask performs as joint or separate models,
in online or offline settings. The specific research objective was to investigate
how well a joint deep learning model for incremental disfluency detection and
utterance segmentation performs on transcripts and ASR output. The for-
mer extends existing work on the pre-segmented utterances of the Switchboard
(SwDA) corpus 1. The latter uses an external ASR system (IBM Watson) to
incrementally process acoustic data and, thus far, could not achieve comparable
performance. While recent advances, particularly regarding lowered Word Error
Rates (WER), make hypotheses generation through ASR much more reliable,
they traditionally lacked similarly fine-grained annotations on different disflu-
ency types as they were applied to transcripts. The paper in question defines
the tasks of (incremental) disfluency detection and utterance segmentation, as
well as the joint model. The authors discuss reasonable constraints and develop
two tagsets a) simple and b) complex for different complexities of disfluency
types. Three explicit research questions are subsequently developed:

• Q1: Given the interaction between the two tasks, can a system which per-
forms both jointly help to improve equivalent systems doing the individual
tasks?

• Q2: Given the incremental availability of word timings from state-of-the-
art ASR, to what extent can word timing data increase performance of

1https://github.com/julianhough/swda

98

https://github.com/julianhough/swda

8.2 Methods

either task?

• Q3: To what extent is it possible to achieve a good online accuracy vs.
final accuracy trade-off in a live, incremental, system?

In order to address these questions, the authors of the paper present two deep
learning architectures for the technical task of incremental decoding for live
predictions, namely Elman Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) based networks. Their experimental protocol evaluates
both models in separate and joint task settings to assess whether they can exploit
common constraints. The system demonstrates competitive results on different
subtasks, verifying its suitability and potential to be used within conversational
agents in the domain of psychiatric health.

The research experiment utilizes several machine and deep learning techniques
to implement an incremental disfluency detection and utterance segmentation
pipeline. Since the live audio recordings used for parts of the original experiment
were not available to the Conquaire reproducibility experiment due to licensing,
we focused on their tagging system in general and worked with the data that
were readily available to reevaluate the published models. All considerations
within this chapter refer to the Deep Disfluency framework as presented in the
git commit identified by the hashcode 4c57a19 2.

8.2 Methods
Speech recognition (SR), also known as automatic speech recognition (ASR),
computer speech recognition or speech to text (STT), is a sub-field within com-
putational linguistics that develops methods and technologies to automate the
recognition and translation of spoken language into text by machines.

Human speech patterns vary between individuals and contain complex signals
such as nuances and diversity in vocal patterns, aspects which adult humans
take into account almost automatically. A machine on the other hand has to
explicitly mitigate these aspects in order to gain a more thorough understanding
of speech signals, even more so in a conversational context.

In order to suitably train a modern, reliable, speech recognition system, many
machine learning algorithms and techniques work in tandem. Since fully training
a STT system end-to-end would require large amounts of raw and annotated
audio data in various environments, the authors rely on a suitable external
system to incrementally generate textual input sequences from audio recordings
and focus on the specific aspects of disfluent terms as discussed above. Here, we
describe the methods used for these experiments in the Deep Disfluency library
and subsequently discuss the reproduction of their results.

2available at https://github.com/d<sg-bielefeld/deep_disfluency/ (4c57a19)

99

https://github.com/dsg-bielefeld/deep_disfluency/commit/4c57a194433af9601ebef0e4c9a451cce4c06252

8 Reproducing an experiment in automatic disfluency detection

Model Training
The speech models are trained on millions of pre-translated words and phrases
from corpora against a live ASR system. For incremental ASR, a free trial
version of IBM’s Watson3 Speech-To-Text (STT) service was used, which ac-
cording to the authors works well on noisy input data and also retains some
useful artifacts such as disfluency markers (e.g. filler terms like ‘uh‘).

The Deep Disfluency system uses the following input features:

• Words in a backwards window from the most recent word (for transcribed
and ASR data, the lack of lookahead capabilities simulates the live influx
of speech information).

• Durations of words in the current window, either from manually tran-
scribed data or automatically generated by the ASR system.

• Part-Of-Speech (POS) tags for words in current window. These are either
extracted from the transcribed corpus or generated through a Conditional
Random Field (CRF) based tagger that was optimized on a domain spe-
cific training corpus.

The models of the Deep Disfluency system extract these features in two main
experimental settings: a) on data generated for Switchboard audio recordings
through an external ASR system and b) on manually transcribed data from the
commonly used and well-annotated Switchboard corpus (SWdA).

For regular usage, the models trained on these corpora can be loaded and
are subsequently used to apply the full tagging pipeline to arbitrary input se-
quences. The pipeline, described in more detail below, consists of the extraction
of features as listed above, sequence to sequence tagging through one of the deep
neural network architectures and consolidating their output with timing infor-
mation through a Hidden Markov Model (HMM) to produce a final set of tags
for each token in the sequence.

Taggers
The Deep Disfluency tagger accepts input sequences (and optionally, external
POS tags and word timings) word-by-word and outputs XML-style tags for each
word, symbolising disfluencies in terms of complex repairs or edit terms. The
full tagset consists of:

‘<e/>‘ an edit term word, not necessarily inside a repair struc-
ture

‘<rms id=N/>‘ reparandum start word for repair with ID number N

3https://www.ibm.com/watson/developercloud/speech-to-text.htmlWatson

100

https://www.ibm.com/watson/developercloud/speech-to-text.html
https://www.ibm.com/watson/developercloud/speech-to-text.html

8.2 Methods

‘<rm id=N/>‘ mid-reparandum word for repair N
‘<i id=N/>‘ interregnum word for repair N
‘<rps id=N/>‘ repair onset word for repair N (where N is normally the

0-indexed position in the sequence)
‘<rp id=N/>‘ mid-repair word for repair N
‘<rpn id=N/>‘ repair end word for substitution or repetition repair N
‘<rpndel id=N/>‘ repair end word for a delete repair N

Every detected repair (and gold standard entry) will exhibit at least the rms,
rpS and rpn/rpndel tags, others might be omitted.

Two example outputs on Switchboard utterances are shown below, where
<f/> is the default tag for a fluent word:

4617:A:15:h 1 uh UH <e/>
2 i PRP <f/>
3 dont VBPRB <f/>
4 know VB <f/>

4617:A:16:sd 1 the DT <rms id="1"/>
2 the DT <rps id="1"/><rpn id="1"/>
3 things NNS <f/>
4 they PRP <f/>
5 asked VBD <f/>
6 to TO <f/>
7 talk VB <f/>
8 about IN <f/>
9 were VBD <f/>
10 whether IN <rms id="12"/>
11 the DT <rm id="12"/>
12 uh UH <i id="12"/><e/>
13 whether IN <rps id="12"/>
14 the DT <rpn id="12"/>
15 judge NN <f/>
16 should MD <f/>
17 be VB <f/>
18 the DT <f/>
19 one NN <f/>
20 that WDT <f/>
21 does VBZ <f/>
22 the DT <f/>
23 uh UH <e/>
24 sentencing NN <f/>

101

8 Reproducing an experiment in automatic disfluency detection

The authors compare Elman Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM) network architectures to train the essential disflu-
ency detection and prediction component of the system. The machine learning
library Theano is used to implement both networks.

While both architectures are recurrent in nature, LSTMs present a special
case of the RNN architecture. Both often exhibit distinct behaviour on dif-
ferent tasks and it is apriori unclear which model would outperform the other.
Albeit their similar foundation, the main difference lies in the scope of previously
seen information each architecture can take into consideration when predicting
the next output. RNNs perform best when the information they require for a
prediction is available relatively close to the current input, whereas LSTMs can
learn to take information into account that is potentially further away.

All neural network models in the disfluency experiments are trained on iden-
tical training sets (within the given experiment), either up to a maximum of 50
epochs or until their parameters converge.

For POS tagging, the system uses the NLTK CRF tagger, which in turn
utilizes the crfsuite package4, trained with Limited-memory BFGS (L-BFGS)
gradient descent optimization on the training set of the SWdA corpus and eval-
uated in terms of accuracy against its test split.

8.3 Analytical Reproducibility
In this section, we describe the implementation of the Deep Disfluency library,
a software library that is designed for the analysis of voice and textual data.
The DSG group were aware of our efforts and interested in the computational
reproducibility of their research publications. They made efforts to open up
their research by using open toolkits and publishing code and data to a public
git repository. The authors publish the library under the permissive free MIT
license through an organisational account on GitHub. The project repository
contains both the source code for their, Python-based libre, software stack as
well as a great deal of raw and intermittent data to reproduce various experi-
ments.

Deep Disfluency

The Deep Disfluency code is packaged and available on a GitHub repository
with documentation outlining data availability and the installation process. End
users can install the system as a regular Python package via pip, the Python
installer. The package can be obtained from the public Python Package In-
dex (PyPI, using pip install deep_disfluency) or locally installed from source using
setuptools (pip install setuptools). At the time of writing, the project depends
on Python 2.7 and conveniently documents all packages that were used for

4https://pypi.python.org/pypi/python-crfsuite

102

https://pypi.python.org/pypi/python-crfsuite

8.3 Analytical Reproducibility

development in a virtualenv and pip compatible ‘requirements.txt‘ file. This
mechanism is used to manage dependencies and retains the exact version of
all external library dependencies (pip install −r requirements.txt). Some of the
Theano related requirements, especially for GPU enabled computation, are eas-
ier installed through the alternative repositories offered by conda, which is part
of the anaconda platform for data science with Python5. Corpus data are either
bundled with the package or can automatically be downloaded via an instal-
lation script that pulls the data and stores it locally. Internally, the structure
of the disfluency system is straightforward and clearly separated into different
sections:

• ASR, for interacting with the ASR system,

• Corpus, for handling different corpora,

• data, containing raw data (if allowed by the respective license), as well as
intermittent results,

• experiments, for reproducing individual experiments and analysis,

• tagger, containing the main deep learning model implementation in
‘tagger/deep_tagger.py‘, and

• decoder, where a Hidden Markov Model (HMM) is implemented that com-
bines timing information and outputs from the network model in addition
to enforcing some model constraints on the output sequence.

Other auxiliary parts of the system are analogouslyresponsible for one specific
subtask only. After the package and its requirements have been installed, the
documentation within the repository leads users to either try out a demonstra-
tion code or follow the instructions to reproduce individual experiments the
system was previously used for. The latter can be used to reevaluate the ex-
periments using RNN and LSTM models, either utilizing the pretrained models
provided by the authors or training the full system from scratch. As outlined
in figure 3 of the original paper, the system uses Viterbi decoding on a HMM
to enforce some constraints on the final output sequence and include timing
information from the transcribed corpus and ASR systems. As a crucial input
feature, a part-of-speech (POS) tagger for the system was trained on in-domain
Switchboard data. The implementation is based on NLTK and the resulting
Conditional Random Field (CRF) model is packaged alongside the library.

Many parts of the system are modular and provide sensible defaults, e.g. if no
POS tagger is specified, the library will load the default CRF tagger trained on
Switchboard data. This allows end users to easily apply the disfluency detection
on their own input sequences. The general pipeline that is exposed through the
library of the Deep Disfluency system follows figure 3 of the original paper and

5https://www.anaconda.com/

103

https://www.anaconda.com/

8 Reproducing an experiment in automatic disfluency detection

consists of a) input of word embeddings and timing information, b) feature
extraction (e.g. through POS tagging), c) decoding the input through a deep
neural network and, optionally, d) combining timing information with the output
of the neural network in a Hidden Markov model (HMM).

The demonstration code, located in the Jupyter 6 notebook ‘demo/demo.ipynb’,
contains a set of concise examples and offers instructions on how to initialize
the tagger with different configurations and pretrained models. The code also
demonstrates how to tag arbitrary text sequences with the library. Figures 8.1
and 8.2 show the notebook output when the tagger and utterance segmentation
system creates repair tags using RNN and LSTM configurations.

Figure 8.1: Tagger output in the Deep Disfluency demo.ipynb file

Software Toolkit and File Formats

The authors make use of a Free and Open Source Software (FOSS) based Python
stack for development consisting of different NLP libraries, like NLTK; with
machine learning libraries like Theano (now defunct) for deep learning. The
library is currently implemented as a Python package targeting Python 2.7
environments, although a Python 3 port seems to be available. Proper packaging
provides some metadata for the code itself and allows end users to install the
full library, along with all dependencies, through convenient and well accepted
mechanisms.

6https://jupyter.org/

104

https://jupyter.org/

8.3 Analytical Reproducibility

Figure 8.2: Tagger output from the local demo.ipynb file

The Deep Disfluency package collectively specifies 85 direct dependencies,
most of which are standard libraries commonly used in the NLP space. These
dependencies should be readily accessible to all end users. Some relevant exam-
ples are listed below, we address the defunct Theano dependency in more detail
as part of the following section.

• NLTK: natural language processing for the SwDA corpus readers and
CRF implementations

• gensim: vector space modeling and topic modeling toolkit

• Jupyter: Jupyter notebook used to house parts of the analysis and visu-
alisations

• Keras: a neural network library that seems to be used as an initial alter-
native for the Theano LSTM implementation

• matplotlib: a visualisation library

• numpy: common data structures and optimized algorithms for mathe-
matical computing

• pandas: Library for working with complex data representations such as
time series; also includes facilities for data manipulation and analysis

• scikit-learn: a machine learning library

105

8 Reproducing an experiment in automatic disfluency detection

• scipy: scientific and technical computing algorithms such as optimization,
linear algebra, FFT

• Theano: (Defunct) Optimization and evaluation of mathematical expres-
sions (including GPU computation); used for the main neural network
implementations of the paper

The system makes use of a number of file formats, all of them well docu-
mented and accessible through open source frameworks. POS tagged corpora,
ASR outputs and Switchboard transcriptions are stored as structured text files,
comma-separated values (CSV) in the latter case. Most data artifacts created
during experiments, e.g. model weights for the neural network, are serialized
using the underlying libraries to create reusable numpy matrices. The decoder
component forms a notable exception in using the Python package pickle for se-
rialization. This format is specific to Python and guaranteed to offer backwards
compatibility, enabling portable models between different versions. When used
as a library, a convenient Python interface makes all internal file formats trans-
parent and allows users to submit their own pre-segmented tokens for predictions
through code instead.

Technical Challenges and Issues

When reproducing the main results of the paper with the Deep Disfluency li-
brary, we faced the following problems and challenges:

Dependencies: While most of the dependencies of the project are still under
active development and maintenance, two minor issues were noteworthy for
future reproductions:

Theano: The neural network component of the Deep Disfluency library is
based on Theano which has been declared defunct as of 2017, when support
ceased following the 1.0 release. The machine learning library originated from
the Montreal Institute for Learning Algorithms (MILA), University of Mon-
treal, who ended development and ceased implementing new features. The
library shifted to low-maintenance mode, i.e. one should not rely on security
bug fixes or patches being implemented at this point. At the time of this writ-
ing, a few maintainers seem to still actively commit and merge pull requests
(PR) on the GitHub repository. While the deprecation of Theano does not, at
present, hinder executing the code, it presents a potential danger which affects
sustainability and makes it costlier to maintain a dependency to the library.
Subsequent work should possibly make an effort to replace the affected parts
of the system. Another downside that became apparent when installing the
library in an environment where the precompiled dependencies of the anaconda
repositories were unavailable is that some Theano dependencies require rather

106

8.4 Summary of reproducibility experiment

complicated manual setup routines and compilation on the target architecture.

Python 2.7: The Deep Disfluency library is written for Python 2.7 which
has a planned end of life in the year 2020. The library will have to migrate
to Python 3.x and potentially be restructured to accommodate a replacement
for the machine learning library Theano. While such migrations are no trivial
task in terms of time and effort, an open pull request on the GitHub repository
indicates that a port to Python 3 is either under active development or already
completed.

Original Data: The primary raw data used in the disfluency research project
for ASR of live voice recordings was unavailable for the Conquaire reproducibil-
ity experiment. Interested parties could acquire the raw audio dataset through
a subscription to the LDC Catalog7. Since the project retained their output of
the ASR component (in ‘data/asr_results/‘), this does not pose a problem to
reproducibility. The process on retraining the system with the original dataset
is also preserved and well documented. Furthermore, the authors bundled the
corpus of manually transcribed Switchboard data. We focus on this transcrip-
tion based corpus since it is more readily available and can reproduce the main
claims of the original paper.

8.4 Summary of reproducibility experiment
The library was installed from source in an environment equipped with hard-
ware for computation on graphical processing units (GPUs), since the neural
networking components within the Deep Disfluency system are capable of tak-
ing advantage of such hardware. The setup process through the Python pack-
aging mechanisms did not present any major difficulties and, aside from the
environment specific Theano dependency problems described earlier, could be
performed just as detailed in the project documentation.

Since it is an isolated compontent that has large effect on data quality within
the system, we initially verified the reported performance of the CRF used
for POS tagging. The claimed accuracies of 0.915 (overall) and 0.959 (for the
UH label) on the Switchboard test set could be easily and exactly reproduced.
Invoking the feature extraction code8, with the TEST flag set to True, loads
the pretrained model that was used in the original experiments and evaluates it
automatically.

Other parts of the original experiments were then repeated. The authors
fortunately aggregate most of the code for the described experiment in a) a

7https://catalog.ldc.upenn.edu/
8located at ‘deep_disfluency/feature_extraction/POS_Tagging.py ‘

107

https://catalog.ldc.upenn.edu/

8 Reproducing an experiment in automatic disfluency detection

Python program for training and generating evaluation data on the test sets
and b) a Jupyter notebook for evaluation of the data generated by the different
experiments.

All experiments come with a configuration entry of hyper parameters in
the ‘experiment_configs.csv‘ file. This file not only controls the neural net-
work architecture used in an experiment, it also documents important details
such as hidden layer sizes and learning rates. This level of documentation and
parametrization is vastly conducive to replaying experiments the way they were
originally performed.

Since the authors included the best performing epochs of their original train-
ing, we opted to rerun the evaluation on the test set of the SWdA transcription
corpus. Both programs involved in this worked out-of-the-box since the whole
codebase makes an effort to use relative paths when referring to data files or
cached models. This made switching the Jupyter Notebook used for analysis a
matter of pointing a single directory from the original repository data to that
of our new run. We then investigated parts of this output in regards to the
original outcome.

System Frps(per word) Fe(per word) FuttSeg(per word) NIST SU
LSTM +timing 0.693 0.864 0.654 58.401
LSTM 0.665 0.862 0.666 59.714
LSTM (complex)
+timing

0.655 0.909 0.680 56.544

LSTM (complex) 0.655 0.907 0.683 58.231
RNN +timing 0.660 0.839 0.602 68.064
RNN 0.639 0.835 0.607 70.160
RNN (complex)
+timing

0.633 0.904 0.653 59.254

RNN (complex) 0.627 0.903 0.662 60.072

Table 8.4: Reproduction of results in table 2 from the original paper.

While our run of the evaluation did not produce the exact results from the
original paper, they seem to be close and lead to mostly the same conclusions.
The LSTM generally outperforms the RNN architecture as evident in table 8.4,
which reproduces parts of table 2 in the original paper. The reported best
values on the transcript corpus were Fe = 0.918 (LSTM) for repair onsets and
Frps = 0.720 (LSTM+timing) for editing terms, the reproduced ones reach
marginally lower results (∆Fe = −0.09, ∆Frps = −0.027). Notable differences
are that a) the reproduction yields the best Frps score on the LSTM+timing
model with complex tags, whereas the original analysis seems to prefer the
simple tagset with timings, and b) the reproduction seems to exhibit consistently
raised utterance segmentation error rates (NIST SU) when compared to the

108

8.4 Summary of reproducibility experiment

original.
The reproduced results on joint vs. separate tasks are similarly close to the

original, see table 8.5 (consistently higher NIST SU error rates remain visible
here). These data do not necessarily match the conclusions of the original paper,
since the joint task formulation seems to only outperform others in terms of
repair onset detection accuracy (Frps) but fails to do so in terms of NIST SU rate,
accuracy of edit term words (Fe), and utterance boundary detection (FuttSeg).
This might indicate a difference in computing environments rather than wrong
results since the variance of results in our reevaluation seems generally higher.
This could stem from differences in dependencies that we had to setup manually,
or even differences in hardware, especially since GPU acceleration was involved
in the reproduction. We executed the evaluation on a node equipped with nVidia
GeForce GTX 1080 Ti graphic cards, invoked in a cluster environment.

System Frps

(per word)
Fe

(per word)
FuttSeg

(per word)
NIST-SU

LSTM (uttSeg only) - - 0.720 50.222
LSTM (disf only) 0.658 0.912 - -
LSTM (joint task) 0.693 0.864 0.654 58.401

Table 8.5: Reproduction of results in table 3 from the original paper.

Similar small deviations can be observed regarding the re-evaluated data in
table 8.6, this corresponds to table 4 of the original paper and presents the
performance of incremental results over the transcript corpus. Repair onset de-
tection in terms of words follows the findings of the original publication, with
the simple LSTM model outperforming the complex ones. TTDrps measured
over time shows more variance than the original data, after corresponding with
the authors we suspect this is likely to be an error in how the evaluation scripts
aggregate the results. Even with slightly different values, the clear winner in this
metric remains the simple LSTM model. In terms of edit overhead (EO) mea-
sure, the new evaluation follows the same trends between systems as originally
reported. Here, the complex LSTM model that incorporates timing information
clearly outperforms the simpler approaches.

The library and data for this project were generally very accessible. The
researchers managed to provide an intuitive abstraction layer around their com-
plex system of underlying data models. By bundling not only their final models
but also the data used to produce them, they enable other researchers to repro-
duce results and adapt the system for their own corpora. Free and Open Source
Software (FOSS) plays a significant role in reproducing the above results since
it enables others to closely match the original environment in which an exper-
iment was performed. We discuss how these aspects affected the reproduction
and facilitates data-sharing initiatives in the following section.

109

8 Reproducing an experiment in automatic disfluency detection

System TTDrps

(word)
TTDrps

(time in s)
Edit Overhead
(word)

LSTM + timing 0.001 1.151 10.282
LSTM 0.001 0.763 10.735
LSTM (complex)
+timing

0.104 1.093 8.577

LSTM (complex) 0.123 0.855 9.972

Table 8.6: Partial reproduction of the results in table 4 (incremental results for
transcript level systems) from the original paper.

Discussion of the reproducibility experiment

Through the public GitHub repository and requirements documentation within
the Python ecosystem we were able to reproduce most of the software environ-
ment that was used in the original experiments. Some details, such as GPU
acceleration and other hardware dependent factors are subject to continuous
improvement and cannot be reliably reproduced. By using compatible versions,
a best effort was made to get as close as possible to the original setup within the
reproduction setting. All major parts of the analytical pipeline were well doc-
umented and the authors made visible efforts to comply with many principles
of good scientific data management: Findability, Accessibility, Interoperability,
and Reusability (FAIR) 9 [3]. The system can be found in a public GitHub
repository that presents an aggregation of all the necessary source code, docu-
mentation and most of the underlying research data that allows others to use
and analyse the system. By packaging their resulting models and exposing a
concise Application Programming Interface (API) to their library, the project
facilitates re-use of the system as a whole in follow-up and related tasks. The
project bundles sufficient instructions and programs to download all external
data researchers might need in the context of the original experiments. Much of
the raw data that forms the basis of the experiments is widely available. While
licensing prevents the project from including the raw voice recordings used to
create the ASR models, the dataset is obtainable through reliable sources and
the extensive research that has already been performed on it indicates that it
will likely remain accessible in the foreseeable future. The authors also provided
trained models and the intermittent results they used at the time of publishing,
which - in terms of reproducibility - might even be preferable over the raw data
due to possible changes in the external ASR system that was used at the time.
Additional research is encouraged by maintaining a copy of the Switchboard
SWdA corpus itself in a separate repository10, without having to incorporate the
full disfluency system as a dependency. The system allowed us to setup a devel-

9https://www.go-fair.org/fair-principles/
10https://github.com/julianhough/swda

110

https://www.go-fair.org/fair-principles/

8.5 Conclusion

opment environment in short time and enabled us to independently reevaluate
the models that were generated in the original experiments. The documenta-
tion, along with the scientific paper itself, provide sufficient information to gain
familiarity with the codebase. While the project does not currently include an
explicit description of semantic metadata, the library provides enough of an
abstraction to be interoperable with any external data source. This enabled
us to exactly verify parts of the original results, namely the performance of
the CRF used for domain-optimized POS tagging. The full and more complex
experimental settings could so far be partially reproduced through the Deep
Disfluency system and original evaluation scripts, which the authors helpfully
retained and separated by publication. We have been able to recreate similar
results on some of the models, whereas differences in other parts of the results
remain open for further investigation. Since the software used for reproduction
was almost identical to the original, the reproduction did not have any ma-
jor problems to re-use even the intermittent data packaged in the repository.
Possible explanations for these deviations might include differences in hardware
and subsequently different behaviour in terms of numerical processing or similar
incompatibilities.

8.5 Conclusion
This chapter showcased a case study from the field of speech recognition and
computational linguistics. The particular task was to detect disfluency markers
and edit terms in spoken language (or transcriptions). This is used to detect
repairs for vocal input or facilitate better detection of turn taking opportuni-
ties for subsequent tasks, e.g. in a conversational setting between human and
computational agents. We were able to partially reproduce the major claims
of the original paper by invoking the system’s evaluation scripts on existing
data and models in a completely new and independent environment. While
comparisons between performance on incremental ASR output and transcrip-
tion corpora had to be deferred due to licensing constraints, the reproduction
could show some of the originally reported behaviour on the transcription cor-
pus itself. The demonstration code for the Deep Disfluency library worked out
of the box, enabling future users to adapt the system as a whole for their own
corpora. Since the system itself is a complex project with multiple interacting
components from data integration to machine learning, we are confident that
given enough time and resources the rest of the results could be reproduced in
a similar fashion. The research project is already very much aligned with FAIR
data principles as it adopts open software practices and makes large parts of
the original experiments easily accessible. Overall, this case corresponds to a
case of limited reproducibility as the results could be partially reproduced for
the offline settings, albeit not exactly.

111

References

References
[1] Schlangen D Hough J. Joint, incremental disfluency detection and

utterance segmentation from speech. In Proceedings of the International
Conference of the European Chapter of the Association for Computational
Linguistics (EACL).

[2] David DeVault, Kallirroi Georgila, Ron Artstein, Fabrizio Morbini, David
Traum, Stefan Scherer, Albert Skip Rizzo, and Louis-Philippe Morency.
Verbal indicators of psychological distress in interactive dialogue with a
virtual human. In Proceedings of the SIGDIAL 2013 Conference, pages
193–202. Association for Computational Linguistics, 2013.

[3] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg,
Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, et al.
The fair guiding principles for scientific data management and stewardship.
Scientific data, 3, 2016.

112

	Preface
	Introduction
	Motivation
	Overview of Conquaire Infrastructure and Workflow
	Case Studies in Computational Reproducibility
	Analysis
	Levels of Reproducibility
	Data formats used by case study partners
	Tools used by case study partners
	Reproducibility Analysis

	Summary
	Bibliography

	Conquaire Infrastructure for Continuous Quality Control
	Introduction
	Why we use Git and GitLab
	Git
	GitLab

	Conquaire Continuous Quality Control Infrastructure
	Overview
	Example of pre-configured YAML file
	Quality checks

	Summary

	Reproducibility of whole-body movement analyses of insects
	Introduction
	Methods
	Data workflow: acquisition and processing pipeline
	Data acquisition: Experimental procedure
	Manual editing and annotation
	Secondary processing: Whole-body kinematics

	Analytical Reproducibility
	Analysis pipeline, data formats and software tools
	Technical Challenges and Issues

	Conclusion
	Bibliography

	Reproducing Trajectory Analysis of Bumblebee Exploration Flights
	Introduction
	Experiment settings and data acquisition pipeline
	Computational Environment for Reproducibility
	Software Migration
	Virtualization
	Continuous Integration supporting quality control

	Conclusion
	Bibliography

	Reproducing experiments of ice nucleation in atmospheric chemistry
	Introduction
	Methods
	Experiment settings and Data acquisition pipeline
	Methods applied to analyze the experimental data
	Main Results

	Analytical Reproducibility
	Research Data - Primary
	Research Data - Analyzed and Processed
	Data Workflow Lifecycle
	Summary of Reproducibility Experiment

	Conclusion
	Bibliography

	Visualization of economic agent-based simulations
	Introduction
	Methods
	The FLAME Environment
	Simulation Data

	Analytical Reproducibility
	Data Analysis Pipeline
	Plotting with FLAViz

	Summary and limitations
	Conclusion
	Bibliography

	Reproducing experiments on early verb understanding in infants
	Introduction
	Methods
	Experimental settings and data acquisition pipeline
	Methods applied to analyze the data
	Main Results

	Analytical Reproducibility
	Data Workflow Lifecycle
	Reproducibility Results

	Summary of computational reproduction experiment
	Conclusion
	Bibliography

	Reproducing an experiment in automatic disfluency detection
	Introduction
	Methods
	Analytical Reproducibility
	Summary of reproducibility experiment
	Conclusion
	Bibliography

	Reproducing the analysis of sequential visual processing
	Introduction
	Methods
	Experiment settings and Data acquisition pipeline
	Methods applied to analyze the experiment data

	Analytical Reproducibility
	Research Data
	Analytical Reproducibility status
	Discussion of reproducibility experiment

	Conclusion
	Bibliography

	Reproducibility in Human-Robot Interaction Research: A Case Study
	Introduction
	Experimental Settings and Methods
	The JSE Experiment
	Replication in Indiana

	Analytical Reproducibility: Results & Lessons Learned
	Technical Obstacles & Procedural Issues
	Results of the Pilot Study on Reproducibility in HRI

	Analysis of reproducibility experiment
	Conclusion
	Bibliography

	Conclusion
	Leere Seite

