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Abstract

Large Language Models (LLMs) serve not only
as chatbots but as key components in agent sys-
tems, where their common-sense knowledge
significantly impacts performance as language-
based planners for situated or embodied action.
We assess LLMs’ incremental learning (based
on feedback from the environment), and con-
trolled in-context learning abilities using a text-
based environment. We introduce challenging
yet interesting set of experiments to test i) how
agents can incrementally solve tasks related to
every day objects in typical rooms in a house
where each of them are discovered by inter-
acting within the environment, ii) controlled
in-context learning abilities and efficiency of
agents by providing short info about locations
of objects and rooms to check how faster the
task can be solved, and finally iii) using syn-
thetic pseudo-English words to gauge how well
LLMs are at inferring meaning of unknown
words from environmental feedback. Results
show that larger commercial models have a sub-
stantial gap in performance compared to open-
weight but almost all models struggle with the
synthetic words experiments.

1 Introduction

Theoretical reasoning, which involves deriving fac-
tual conclusions from given premises, has been
extensively studied in the context of large language
models (LLMs) (Brown et al., 2020; Wei et al.,
2022; Kojima et al., 2022). There has been less
work focusing on incremental learning (Schlangen,
2023) of agents with regards to how easily they
generalise to unknown environments. While the-
oretical reasoning can be evaluated using refer-
ence propositions, incremental learning presents
unique challenges because the agent is required to
observe consequences of actions in an environment
(can be unfamiliar one) and learn how to interact
step-by-step. There is significant interest in using
LLMs for embodied Al tasks in robotics and simu-

Goal: Put the potted plant on the table.

You are in a living room now. There is a cupboard, a table and a chair. The
cupboard is closed. There is a passage to a hallway, to a kitchen here.

> go hallway

You are in a hallway now. There is a potted plant. The potted plant is on the
floor. There are passages to a bedroom, a living room, a broom closet.

2 >take potted plant
You take the potted plant. In your inventory you have a potted plant.
&2 >golivingroom

You are in a living room now. There is a cupboard, a table and a chair. The
cupboard is closed. There is a passage to a hallway, to a kitchen here.

> put potted plant on table

You put the potted plant on the table.

>done
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Figure 1: Sample representation of an episode in our
game. The agent 2 (an LLM) is given a task and
randomly assigned to some room (living room). The
environment provides feedback for every action (go,
take, put, etc.) of an agent. The top part is how the
game is played in a textual world. The bottom part is
the visual representation of initial and final states, also
indicating the knowledge gained by the agent.

lations. (Ichter et al., 2022). Many of the existing
benchmarks ( WebArena (Zhou et al., 2024), AL-
FRED (Shridhar et al., 2021), AI2-THOR (Kolve
et al., 2022), Balrog Arena (Paglieri et al., 2024))
include complex environments or require compu-
tational resources to execute vision-related tasks.
In contrast, text-based interactive fiction (IF) en-
vironments such as TALES (Cui et al., 2025) or
TextWorld (Coté et al., 2019), where a situation is
described textually and updated in response to tex-
tual commands, make it possible to study reasoning
abilities that go from goal and situation description
to goal-directed action in greater isolation.
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In this paper, we focus on incremental learning
capabilities of agents (LLMs) under controlled and
uncontrolled conditions. Agents have to uncover
the restrictions and rules of the task by interact-
ing and taking the feedback (in-context learning)
by environment into account. We also examine to
what degree the underlying common-sense knowl-
edge embedded in LLMs helps to navigate the tasks
and how much of it is due to their generalisation
capabilities. We expand this by introducing our
text-based AdventureGame' environment to con-
trol the applicable level of common-sense world
knowledge, for testing situated language environ-
ment understanding, spatial navigation, and instruc-
tion following abilities. We introduce various ex-
periments to assess the effect of common-sense
knowledge and generalisation capabilities where
the agent (LLM acting on an environment) has to
perform home delivery tasks with common objects
within room types or has to infer the meaning of
synthetic words by solely interacting and getting
feedback from the environment. Figure 1 (top)
shows an example of an interaction, while the bot-
tom part is the visual representation of what has
changed going from an initial state to the final one.
Our contributions are as follows:

* A set of experiments based on an established
object delivery task in a typical home setting,
with varied levels of complexity, situated in-
teraction task demands and information to be
acquired.

» Synthetic words experiment to assess reliance
on common-sense knowledge and incremental
learning capabilities

* Quantitative and qualitative comparison of re-
cent large language models (LLM) of varying
sizes

* In-depth analysis to assess models’ behaviour,
examining good interactions and common fail-
ure cases.

2 Related Work

In-context Learning from Feedback: LLMs ac-
quire situational information in IF environments
through self-guided in-context learning (ICL) from
observations and failure feedback. Testing LLM
generalisability requires test instances unlikely to

'Source code: https://github.com/clembench/
clembench/tree/main/adventuregame  (inspired by

the “Colossal Cave Adventure” game by W. Crowther:
https://ifdb.org/viewgame?id=fft6pu91;j85y4acv)

be seen during training to avoid reliance on mem-
orized common-sense knowledge. BlocksWorld
obfuscates block-manipulation words (Gragera and
Pozanco, 2023; Valmeekam et al., 2024, 2023),
while Eisenschlos et al. (2023) tested ICL by pro-
viding pseudo-English words with explanations to
measure proper application in WinoGrad schema.
Shinn et al. (2023) use “verbal reinforcement learn-
ing” with contextual feedback for environment in-
teraction without weight training. Shi et al. (2024)
found that smaller models rely on semantic priors
while larger ones override mappings based on in-
put context in label-flipping tasks. AdventureGame
extends IF benchmarking with synthesized words
in household tasks, from partial to fully synthetic
non-function vocabulary.

Interactive Fiction (IF) Environments: These
environments have been used to train and compare
agents where they combine a specific set of agen-
tic challenges: partial observability, large world
state and action space, requiring exploration and
common-sense reasoning, in addition to the text-
only interaction and feedback. It has been shown
that performance in text-only IF environments is
transferable to embodied environments (Shridhar
et al. (2021), Jansen (2021)). Interactive fiction
(IF) environments have also been used to compare
LLM performance in regards to their world mod-
elling, task solving and planning capabilities (Wang
et al. (2022), Tan et al. (2023), Tsai et al. (2023),
Ma et al. (2024), Gioacchini et al. (2024)). Jeri-
cho (Hausknecht et al., 2020) provides a framework
for classic IF games, which remain challenging for
LLMs due to complexity and humorously nonsen-
sical solutions. AdventureGame condenses core IF
challenges while avoiding overly difficult genre
aspects. TextWorld (Coté et al., 2019) extends
Jericho for large-scale simplified IF generation
and agent benchmarking. AdventureGame enables
similar generation but records detailed interaction
scores and exploration data. ALFWorld (Shrid-
har et al., 2021) combines 3D-embodied simula-
tion with text-only pre-training, demonstrating text
interaction transferability to multimodal domains.
TALES (Cui et al., 2025) benchmarks LLM reason-
ing by combining the above IF environments with
Simon Says and ScienceWorld (Wang et al., 2022).

AdventureGame has a unique focus on text-only
household object placement tasks by requiring the
tested LLMs to perform in-context learning from
minimal natural language feedback to assess the
core reasoning, instruction following, situated ac-


https://github.com/clembench/clembench/tree/main/adventuregame
https://github.com/clembench/clembench/tree/main/adventuregame
https://ifdb.org/viewgame?id=fft6pu91j85y4acv
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Figure 2: Simplified illustration of AdventureGame interaction. The agent &2 is controlled by an LLM. The task is
put the plate, book and pillow on the table (marked by green crosshair). The agent starts in the pantry. Unexplored
rooms are gray. The agent first goes to the kitchen, takes the plate from the counter (Turn 1-2), then goes to the
living room, takes the book (Turn 3-4). Next, it goes to the hallway, and from there fo the bedroom where it picks up
the pillow (Turn 5-7), then it returns to the living room, puts the carried objects on the table (Turn 8-13).

tion selection, and, most importantly, the effects of
synthetic vocabulary to test generalization beyond
training-embedded common-sense knowledge.

3 AdventureGame: IF Environment

In this section, we describe the details of the game.
A simplified illustration is given in Figure 2, where
an LLM controls an agent to perform the given task.
We implemented the game using the clembench
framework (Chalamalasetti et al., 2023) (prompts
are provided in Appendix D).

3.1 Task Definition

Interactive Fiction games can be considered par-
tially observable Markov Decision processes (Kael-
bling et al., 1998), with the player having only par-
tial information about the game’s world state from
textual observations. The player must first discover
all task-relevant locations and objects, making ex-
ploration as much a part of solution strategies as ef-
fectively executing a plan for manipulating objects
to reach the game’s goals. To do so successfully,
the player has to model environment states (like
room connections and locations of objects), as well
as the large action space and state transitions result-
ing from actions, especially over multiple turns.

The task is defined by the tuple (G, S, A,0,T)
with a set of goal states (G, state space S, valid
action space A, observation space O (including
IF interpreter feedback), and transition function
T:5xA—S.

An agent with policy m makes predictions at
time step ¢ based on goals in G and memory m; =
{oj,aj, 0j4+1,Aj+1, ...0,5}7 0 <j < t, whichis a
sequence of actions and observations. This agent
trajectory 7 = [so, ag, S1, a1, ...s¢| is formulated
by policy and environmental state transitions as

below where a time step ¢ is one turn of the game:

T
px(T) = p(s0) H w(at|G, s¢, me)T(Se41]|5¢t, at)
t=0

All state transitions are deterministic, so only the
actions generated by the LLM as text commands
determine the agent’s trajectory. Observations are
likewise deterministic. We assume that the lan-
guage model models an underlying policy, tapping
into the capabilities under examination.

3.2 Interaction

World state, representing a temporary subset of .S,
is stored as a set of fact tuples, describing both
mutable states of entities and immutable states.
Mutable states are at, in, on, open and closed.
Immutable states describe entity types and cate-
gories and are used as conditions for actions (see
Table 5).

Actions are defined in the PDDL (Fox and Long,
2003) format, covering the state changes they enact
(representing 7T"). The action definition also con-
tains a Lark parser grammar snippet that is used to
form the parse-able input command grammar, feed-
back templates for success and individual failures
(covering O) and a Clingo (Gebser et al., 2017) en-
coding snippet of the state changes of the action for
optimal solution solving (representing 7" as well).

The player is not given a list of currently avail-
able actions but rather has to model the action space
itself. Movement is only allowed to connected
rooms (unlike in Basavatia et al. (2024) and others,
which allow “teleportation”).

Turn Limit: The interaction is limited to 50
turns, and reaching the limit is recorded as aborting
that episode.

Formatting: An output produced by LLM has to
follow the format below (starting with the prompt
symbol >), e.g. > go hallway:



> "Natural language command”

The episodes where generated outputs that do
not follow this formatting are aborted.

Parsing & State Change: The interpreter at-
tempts to parse the command, and if it passes, the
corresponding action is performed in the resolution
phase. State change conditions are checked, and
any resolution failure stops the process. If state
change conditions are fulfilled, the game world
state is updated accordingly, removing and adding
facts in the world state. All changes in the world
state are recorded. Lastly, the interpreter checks if
changed states are part of the goal state set G and
returns achieved goal states GG, textual feedback
o € O and any failure that might have occurred in
processing the input command to be recorded.

The player ends an episode by generating
the “done” command. Once the episode ends,
goal states achieved as of the last turn are
recorded—meaning that goal states achieved in-
termittently are not considered for metrics.

Exploration Tracking: All commands, state
changes, observed locations and objects are
recorded for each turn, including errors while ex-
ecuting the commands. We label each action (in-
spired by Kirsh and Maglio (1994)) for being epis-
temic and pragmatic. An action is epistemic when
it improves a player’s perception of the game situa-
tion without directly progressing towards the goal®
and pragmatic when the action directly works to-
wards reaching the goal. Then, we calculate epis-
temic gain by counting how many world state facts
the player newly observes as a result.

4 Experimental Setup

4.1 Game Instances

We create different set of instances to test incremen-
tal learning under uncontrolled (Basic, Synthetic
words) and controlled (Pre-exploration, Inventory
limit) conditions.

4.1.1 Basic

The core task in our experiments is a delivery task
where the agent is expected to deliver three objects
to target receptacles in a typical home environment.
Objects and rooms: The basic instances contain
22 everyday household objects (e.g. plant, book),

’Kirsh and Maglio’s example is moving a Tetris tile to
the leftmost position to be sure about its position instead of
moving it towards the location that is most beneficial to put it
down in.

six common room types (e.g. kitchen, hallway)
and seven staple IF actions (e.g. go, take). The
complete lists are in Appendix C.

Difficulty levels: easy & hard. The easy level
means that goal objects are not inside closed con-
tainers (easily accessible, immediately observable
once the agent enters the room) and are located
near the target receptacle in the initial world state.
The hard level means that goal objects are initially
hidden in closed containers (e.g. cupboards, clos-
ets), where each needs to be delivered to a different
target. There are also longer paths between ini-
tial goal object locations and their targets. Our
hypothesis is that it is challenging for models to
navigate multi-step actions to reach a goal because
hidden objects require epistemic actions, and far
away objects require keeping the objective in mind
over several steps (increases the number of steps to
reach goals).

4.1.2 Inventory Limit

Using the same settings described above, we cre-
ate another configuration by setting a limit on how
many objects can be carried by the agent at a time.
We set the limit as two objects. We want to analyse
whether models lean towards strategic use of the re-
source “inventory” and are efficient when they have
the limit. The set of objects and rooms in instances
used here are the same as in Basic experiment.

4.1.3 Pre-Exploration

We aim to test the effect of additional context at the
start of the interaction. We provide the information
about the rooms and which objects are there lo-
cated there to the agent. This effectively inserts the
layout of rooms needed for correct navigation and
locations of task objects (or the containers holding
them in "hard’ instances) into context. As this au-
tomated interaction is formatted like any correct
interaction input and feedback, the pre-exploration
sequence can be considered as a few-shot in-context
learning. Pre-exploration sequences are six to eight
“g0” actions. We want to analyse whether models
get more efficient (compared to the Basic experi-
ment) in completing the goals. The set of objects
and rooms in instances used here are the same as
in Basic experiment.

4.1.4 Synthetic Words

We create another experiment set by replacing
words in the home delivery task with pseudo-
English words using scripts by Eisenschlos et al.



(2023) while retaining an unaltered basic set of
common IF actions. The goal here is to assess
whether agents can solve the task incrementally
by relying solely on the feedback from the envi-
ronment. These words are unknown to any LLM.
Thus, embedded common-sense knowledge does
little affect performance and focuses more on gen-
eralisation abilities. We defined three difficulty
levels: easy, medium & hard.

Easy level: Three objects and one action word
are replaced with pseudo-English words. A short
explanation of the replaced action word is provided.
For example, we apply the following replacements:
bedroom — enticed, book — decte, shelf — stord.
The verb put is replaced with aphon, and the ex-
planation “In addition to common actions, you can
aphon. To aphon is to physically place something
somewhere.” is provided in the initial prompt. The
correct command to put the book on the shelf is
then > aphon decte (on) stord.

Medium level: Nine objects and three action
words are replaced with pseudo-English words.
The replaced synthetic actions words are listed in
the initial prompt without explanations, such as “In
addition to common actions, you can inate, pante
and eness”. In this case, eness replaces close, pante
replaces put and inate replaces open.

Hard level: This variant uses pseudo-English
words for all entity and room nouns, state adjectives
and action verbs, with the task being to change
the states of entities using the verbs, removing the
possibility of relying on common-sense knowledge.
As we expected, the ubiquity of synthetic words
would provide great difficulty in itself, but these
instances contain only four rooms in a simple linear
arrangement. Object state interaction complexity
ranges from single state change (> mator subst
directly resulting in the subst is now dent, fulfilling
a goal state), via binary state sets (> unbal diale
changes the unsust-able’ diale object from being
unsust to being exper), to state sets with three states,
requiring the use of two actions in the correct order
to bring an object into a target state.

Our intention here is to validate models’ reliance
on common-sense knowledge seen during their
training phases. These experiments require the
models to apply in-context learning to uncover the
meanings of synthetic words by interacting with the
environment and getting feedback on their actions.

4.1.5 Number of Instances

In total, we have nine experiments for each
variant described above: Basic-easy, Basic-hard,
Basic-easy-limit-two, Basic-hard-limit-two,
Basic-easy-preexplore,  Basic-hard-preexplore,
Synthetic-words-easy, Synthetic-words-medium
and Synthetic-words-hard. Each experiment has /6
instances, corresponding to /44 instances in total.

4.2 Metrics

Framework-specific metrics: The clembench
framework includes two main metrics: Played &
Quality Score. The game finishes successfully only
when a model produces > done as the last action
and all goals have been achieved. The game is
aborted when a model does not follow formatting
requirements (see Section 3.2) or reaches the max-
imum turn limit, which is 50. Played is the ratio
of instances that were not aborted. Quality Score
measures how many episodes have all their goal
states reached at the end. Producing the > done
action command without achieving all goal states
is considered a lost episode. In cases where all goal
states are achieved and > done is also generated,
then the episode is successful.

Finally, to rank the benchmarked models, the
framework includes a metric called clemscore, the
macro-average Quality Score multiplied by the
macro-average proportion of Played games across
all experiments.

Game-specific metrics: We have a specific met-
ric to keep track of achieved goals. It is the ratio
between achieved goal states G, and all goal states

G: Goal Success Rate (GSR) = ‘%\' % 100.

4.3 Evaluated Models

We evaluated open-weight and commercial mod-
els (with temp=0). We included recent commer-
cial models such as: 03-mini (Jan ’25), GPT-4o0
(Aug ’24) Claude-3-7 (Sonnet, Feb ’25). We
also included recent open-weight models: Llama-
3.1 (8B, 70B) (Grattafiori et al., 2024), Llama-
3.3 (70B), Qwen2.5 (Coder-32B, 72B) (Qwen
et al., 2025), and Deepseek-v3 (DeepSeek-Al et al.,
2024). We used the APIs of the respective commer-
cial models. We ran open-weight models on two
NVIDIA A100 GPUs. Deepseek-v3 was run via
the OpenRouter APL.



Model clem Quality % Played Goal

score Score Rate
Claude-3.7 86.4 88.2 97.9 90.5
03-mini 68.7 79.2 86.8 85.9
GPT-40 52.7 56.2 93.8 75.9
Llama-3.1-70B  43.8 49.2 89.2 66.8
Llama-3.3-70B  40.1 433 92.5 64.4
Deepseek-v3 39.8 46.5 85.4 64.8
Qwen2-72B 15.9 28.8 554 47.5
Qwen2.5-32B 12.0 25.0 479 47.8
Qwen2.5-72B 11.2 21.2 52.9 449
Llama-3.1-8B 8.2 20.6 39.9 35.7

Table 1: Overall benchmark scores for models.

5 Results

5.1 Overall Comparison

Table 1 shows the main scores for the benchmarked
models. Larger models achieve higher quality
scores and better conform to the prompted output
format (yielding higher % Played). Most com-
mercial models achieve higher scores than open-
weight models (8.9 points between GPT-40 and
Llama-3.1-70B), with Claude-3.7 scoring higher
than the next best model by at least 9 points on the
three major metrics. Another observation is that all
high-ranking models can play the game (follow the
instructions) but lack performance in solving the
task. Next, we analyse the cases deeper to uncover
which factors contribute to low scores.

5.2 In-depth Analysis

Table 2 presents the Quality and % Played val-
ues for each experiment. We selected the top-
performing six models. The results for other mod-
els can be found in Table 3. Next, we break down
the results across each experiment.

Basic Navigation & Task Solving: In the easy
setting, most models seem to get somewhat ade-
quate performance (>=50). Notably, among the
compared top six models, o3-mini is the only
model without a full % Played score in this experi-
ment, leading to it not matching the performance
of the best model, Claude-3.7. However, 03-mini
achieves the highest scores in the hard setting, with
it and especially Claude-3.7 being impacted far
less by the increased task complexity.

Effects of Pre-Exploration: This experiment
aims to see whether models increase their perfor-
mance since initial rooms and certain objects and
containers are revealed. When comparing the re-
sults in the Basic experiment. The unexpected be-
haviour is with 03-mini and GPT-40 on the hard,
where their performance worsens despite the pro-
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Figure 3: Average number of turns taken by each model
for each experiment category and average optimal num-
ber of turns for each category are also included (dotted
lines).

vided pre-exploration context. Figure 3 visualises
the average number of turns it takes for each experi-
ment category. The figure also provides the optimal
number of turns (averaged). We can clearly observe
that pre-exploration indeed helps the high-scoring
models (Claude-3.7) to be more efficient (requiring
less number of turns) and yield better performance
when compared with the Basic experiments.

Inventory Limit: When compared with the Ba-
sic experiments, the performance of Claude-3.7
and o3-mini models get better while others yield
similar performance. Figure 3 visualises similar
patterns where they do not need more turns than the
Basic experiments. 03-mini even reduces the num-
ber of turns with the limit. It suggests that these
models can navigate the inventory limit while re-
taining or even increasing performance. However,
lower-performing models (GPT-40, LLama mod-
els, Deepseek-v3) tend to take much longer than
the Basic experiment. It shows that these models
get affected by the inventory limit not much on the
general task solving but having lower efficiency.

Synthetic Words: In the easy setting, the
smaller models (Llama-3.1-8B, Qwen2.5-32B-
Coder) yield the worst performance showing that
the required incremental learning abilities are
severely lacking in smaller models. All commer-
cial models 03-mini, GPT-40, Claude-3.7, GPT-40
show an improvement over the Basic experiment re-
sults. Claude-3.7 even achieves full scores, making
it the best model in this experiment.

The larger amount of synthetic words in the
medium setting does lead to a drastic drop (ex-
pected by the design of the experiment) in scores



Experiment Claude-3.7 03-mini GPT-40 LM-3.1 LM-3.3 DS-v3
Q P Q P Q P Q P Q P Q P
Basic easy 75.0 100 | 75.0 87.5 | 687 100 | 625 100 | 56.2 100 | 625 100
hard 812 937 | 8.5 937 | 437 875 | 312 875 | 187 93.7 | 56.2 875
Pre-Exploration easy 75.0 100 | 75.0 93.7 | 87.5 100 | 68.7 100 | 68.7 100 | 93.7 100
hard 937 93.7 | 750 750 | 37.5 875 | 500 93.7 | 312 100 | 375 56.2
Tnventory Limit easy 812 100 | 87.5 100 | 68.7 100 | 62.5 100 | 50.0 100 | 68.7 100
hard 93.7 93.7 | 937 937 | 312 875 | 375 875 | 312 937 | 312 56.2
easy 100 100 | 87.5 100 | 81.2 100 | 68.7 93.7 | 43.7 93.7 | 43.7 100
Synthetic Words | medium | 100 100 | 43.7 43.7 | 437 812 | 375 50.0 | 18.7 500 | 25.0 81.2
hard 937 100 | 87.5 937 | 437 100 | 125 875 | 43.75 9375 | 0.0 875

Table 2: Detailed results across different experiments. Only high performing six LLMs were selected. The values are
Quality Score (Q) and % Played (P) separated by the / (slash sign) for each experiment. LM-3.1 — Llama-3.1-70B,

LM-3.3 — Llama-3.3-70B, DS-v3 — Deepseek-v3

compared to the easy experiment, lowering scores
by at least half. However, Claude-3.7 still yields
the perfect scores, again.

Performance impact diverges between mod-
els for the hard setting, where we expected the
task to be more challenging for the models than
the medium setting. While Llama-3.1-70B and
DeepSeek-v3 (0.0 Quality Score) do worse when
confronted with many synthetic words, 03-mini per-
forms almost as well as in the easy experiment and
Claude-3.7 achieves high performance again (fails
only in a single episode).

Figure 3 shows that none of the models are that
efficient (requiring more turns than the optimal
solution) as they were with other experiments. It
suggests that, as expected, the models need more
turns to infer the meaning of words. Claude-3.7
is not only the best performing model but also the
most efficient one in these experiments.

5.3 Qualitative Analysis

Navigation and self-correction: All models make
navigation errors despite the observation feedback
mentioning passages to all connected rooms ev-
ery time the player enters a room. While lower-
performing models repeat this type of failure more
in individual episodes, higher-performing models
acquire the game’s rule that allows movement only
to connected rooms and self-correct their naviga-
tion after receiving feedback. This type of failure
most often occurs in the turn after a task object has
been picked up or delivered. Figure 4 illustrates
how Claude-3.7 attempts to "> go to hallway" from
the unconnected bedroom (red arrow) and is told
that this is not possible. It then respects the con-
nection requirement for the rest of the episode and
goes to the broom closet to take the mop and further
to the pantry with the freezer without attempting to

go to these known rooms directly.

Insufficient exploration: Figure 5 illustrates
how Qwen2.5-Coder-32B regularly checks con-
nected rooms, e.g. hallway, which largely con-
tributes to its performance. However, it does not
do this thoroughly enough, missing the table in the
pantry and incorrectly placing the task objects on
the side table, as most models do.

Synthetic words & in-context learning: Figure
6 shows a typical behaviour of well-performing
models in the synthetic words experiment: After
attempts to take the book (regardless of it not be-
ing needed for the task), 03-mini tries the synthetic
word actions provided in the initial prompt. The en-
vironment feedback contains the information nec-
essary to learn that “aling” means to “take”, “vater”
means to “open” and “nogia” means to “close”.
Later in the same episode, shown in Figure 7, 03-
mini fails to use the synthetic verbs properly. It
eventually produces the right action “vater imped”,
allowing it to fulfil one of the three task goals, but
the episode ends due to reaching the turn limit.

6 Discussion

Small models lack generalisation capabilities:
models that perform worst in the synthetic word ex-
periments lack the ability to generalise beyond the
content of their training data, with the introduction
of even a few unseen token sequences in context
disrupting their performance.

Large models show individual differences for
common-sense knowledge vs. in-context learn-
ing (ICL): the mixed performance between larger
models indicates substantial differences in ICL and
generalisation capabilities between individual mod-
els. While these models do not fail like the smaller
ones, they are distracted by encountering synthetic
words, eventually fail to solve the tasks.




Task: plant on side table,
plate on shelf, mop in
freezer

(in bedroom at turn 16)

Living Room Kitchen

=

> go to hallway
GM: You can'tgotoa
hallway from here.

> go to living room
> go to hallway

> go to broom closet
> take mop

H 7

m—% 1 Iy %Pﬁ@

> go to hallway

> go to living room
- o/ Bropi Closet|  Claudes3.5-Sonet > 50 tokitchon
3 asic-hard-limite > go t t
- N .@ episode 15 9o to pantry
Bedroo 1 Turn 16-24

Figure 4: Claude-3.7 correcting navigation.

‘ Living Roomy— ., E Kitchen
Ce
@ =
im
™

Task: pillow on table, book
on table, plate on table
(carries task objects,
hallway not visited before)
E > go to hallway

> go to living room

> put book on side table
> put plate on side table
> put pillow on side table
> done

— 1 I I I
Hallway & :
=
< Qwen2.5-Coder-32B

///,\ / basic-easy episode 14
- Turn 15-20

edroom

Figure 5: Owen2.5-32B exploring insufficiently.

Automatic provision of information can be
detrimental: the negative impact of the navigation
head-start in the pre-exploration experiments com-
pared with the basic experiments is unexpected, as
it should provide a large part of the necessary explo-
ration and the situation state information needed to
solve the task better. However, we assume that the
observed performance is an effect of ICL as well:
The pre-exploration sequence essentially serves
as few-shot examples fo not interact with task-
relevant objects when they are encountered, which
is opposed to the behaviour the tested models show
without it, interacting with task objects immedi-
ately and thus directly pursuing task goals.

Situation complexity is more important than
words: the difference in scores in the easy and
medium variants suggests that strong common
sense knowledge impedes the ability to learn
new information for all models except Claude-
3.7, which excels in this acquisition. The higher
scores some models achieve in the hard synthetic
words experiment are due to the relatively low com-
plexity of the situation, requiring less navigational
exploration and lacking task objects that need to
be revealed through interaction. Models that can
learn the meaning of arbitrary synthetic words from
the feedback provided when interacting with these
words can thus solve these tasks better, as shown

Task: secti in imped, inet
on table and broom on
rably

Model tries variations of
‘> take book’ in turns 7-11
GM replies with “I don't
know what you mean.” to
all.

> aling book

GM: You take the book. ...
> vater book

GM: The book is not
closed.

> nogia book

GM: The book is not open.

03-mini
new-words-medium
episode 2

Turn 12-21

Model ‘alinged’/took the

‘secti’/plate in the kitchen.
=
(=]

) > aling secti imped

Figure 6: 03-mini exploring synthetic actions.
. Living Room E Kitchen

GM: | don't know what 'secti
imped' means.

b > open imped
GM: | don't know what you
— mean.

GM: | don't know what 'secti

imped' means.

T
[V] .. (tries ‘nogia’ and put)

> open imped

GM: | don't know what you

mean.

> vater secti imped
niish

A
H I
[#]

= > vater imped
e o3-mini : GM: The imped is now open.
[ | ) new-words-medium > put secti in imped
. episode 2 GM: You put the secti in the
Bedroom Turn 36-43 imped.

Figure 7: 03-mini misapplying synthetic actions.

by the high scores of 03-mini and Claude-3.7.

Human baseline: we conducted a small study
and played five instances from each experiment and
measured 100 points in all metrics while Claude-
3.7 scoring very close to it (see Table 4).

7 Conclusion

Our experimental results indicate that performance
increases with model size, progressing from gener-
ally bad situation modelling in smaller models to
a middle ground of good situation modelling but
frequent interaction failures, to only a few larger
models fulfilling the given task in more than two
thirds of cases. Incremental learning abilities of
models were tested even further with the synthetic
words experiments and showed that the gap be-
tween commercial and open-weight models is still
quite big. Models relying more on their embed-
ded common-sense knowledge performed worse
and were less efficient that those models that are
capable of incrementally figuring out the task and
applying in-context learning.

Limitations

The current study is restricted to only English in
its current state. While we have yet to do this,
translating the prompts and adapting the underlying



grammar entries is possible for other languages,
too.

The performance we measured here may not
transfer to other modalities with more sophisti-
cated demands, like visually or physically embod-
ied agents or robots. Shridhar et al. (2021) found
that while training in text-only environments is
faster and less resource-intensive than training in
the AI2Thor framework, agents trained in text-only
environments struggled to adapt to the require-
ments of more complex embodiment properly.

Ethics Statement

In academic research, using paid proprietary APIs
with underlying models about which little is known
(training data, model architecture) is less than ideal.
Currently, the models benchmarked here are the
high-performing ones that are commercially used.
We hope that more open models with high per-
formance will be released soon and that proper
research can be done on them.

Models that may be used in agents, possibly em-
bodied as robots, being able to acquire replacement
lexicons or entirely new semantics simply through
ICL bears the possibility to circumvent safety mea-
sures from model creators and providers. We do not
condone any such attempts based on our findings
on the amenability of certain models to this kind of
manipulation, commonly known as jailbreaks, spe-
cially when LLM agents are capable of interacting
with computer systems or controlling robots.
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A Additional Results

Figure 8 shows percentages of failures by process-
ing phase.

Figure 9 shows percentages of entity-related fail-
ures. 03-mini and GPT-40 do not have inventory
limit failures, while Qwen2.5-32B and Qwen2.5-
72B have low amounts.

B Human comparison results

An annotator who has background in computational
linguistics played the first five instances of the ex-
periments, in classic IF fashion using the clemcore
terminal. Table 4 shows overall scores for the tested
models and human. Figure 11 shows the average
number of turns taken to solve the first five episodes
by experiment category, including human data.
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Experiment Qwen2-72B | Qwen2.5-32B | Qwen2.5-72B | LM-3.1-8B
Basic easy 31.2/68.7 56.2/93.7 18.7/50.0 37.5/62.5
hard 6.2/31.2 12.5/50.0 6.2/25.0 0.0/31.2
Pre-Exploration easy 68.7/93.7 56.2/81.2 43.7/75.0 50.0/100
hard 31.2/56.2 0.00/25.0 6.2/43.7 6.2/43.7
Tnventory Limit easy 56.2/87.5 25.0/75.0 43.7/93.7 31.2/75.0
hard 25.0/56.2 12.5/37.5 6.2/31.2 12.5/18.7
easy 31.2/68.7 12.5/31.2 18.7/50.0 0.0/6.2
Synthetic Words | medium 0.0/18.7 0.0/6.2 0.0/18.7 0.0/0.0
hard 6.2/75.0 6.2/37.5 0.0/81.2 6.2/6.2

Table 3: Detailed results across different experiments for LLMs not shown in Table 2. The values are Quality
Score/% Played for each experiment. LM-3.1-8B — Llama-3.1-8B

Model clem

score
Human baseline  100.0
Claude-3.7 97.8
03-mini 73.2
GPT-40 514
Llama-3.1-70B 51.0
Llama-3.3-70B 45.6
DeepSeek-V3 40.2
Qwen2-72B 26.3
Qwen2.5-72B 17.3
Qwen2.5-32B 14.2
Llama-3.1-8B 11.3

Qualit; Goal
Scorey % Played Rate
100.0 100.0  100.0
100.0 97.8 99.3
86.7 84.4 91.9
88.9 57.8 78.5
95.6 53.3 75.6
93.3 48.9 71.1
82.2 48.9 66.7
62.2 422 54.8
55.6 31.1 55.6
53.3 26.7 50.4
42.2 26.7 43.7

Table 4: Overview results from the first five episodes of each experiment (total 45) including human data. The
annotator has a background in computational linguistics and participated in the study voluntarily.
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Figure 8: Successful and failed action quotas by IF
interpreter processing phase.

C IF Actions, Objects & Rooms

All experiment instances have the core entities
“player” and “inventory” needed for the core Ad-
ventureGame IF interpreter. These and the ’floor’
entity can not be replaced for the synthetic words
easy and medium experiments.

The basic home domain has the following en-

mmm inventory limit exceeded
entity trait mismatch
EEm entity state mismatch

|
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|
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% of entity failures
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Qwen2.5-32B

Qwen2.5-72B
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Figure 9: Percentages of selected entity-related failures
for all tested models.

tities (with possible location rooms in brackets):
Table (kitchen, living room), side table (living
room, bedroom), counter (kitchen), refrigerator
(kitchen, pantry), cupboard (kitchen), wardrobe
(bedroom), shelf (kitchen, pantry, living room),
freezer (pantry), potted plant (living room, hall-
way, bedroom), chair (living room), bed (bedroom),
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Figure 10: Average number of turns taken by each model for each experiment category. The averaged optimal
number of turns for each experiment category is also given as dotted lines. Dotted blue lines for all basic, inventory
limit and pre-exploration, red lines is for synthetic words experiments.

couch (living room), broom (broom closet), mop
(broom closet), sandwich (kitchen, pantry), apple
(kitchen, pantry), banana (kitchen, pantry), orange
(kitchen, pantry), peach (kitchen, pantry), plate
(kitchen), book (living room, bedroom), pillow
(bedroom).

The following entities are “supports”, allowing
“movable” objects to be placed “on” them: Table,
side table, counter, shelf, chair, bed, couch. The fol-

lowing entities are ’containers’, allowing “movable”

objects to be placed “in” them and objects in them
being accessible if they are 'open’: Refrigerator,
cupboard, wardrobe, freezer.

The following entities are “movable”: Potted
plant, broom, mop, sandwich, apple, banana, peach,
plate, book, pillow.

The basic home domain has the following rooms
(with possible adjacent rooms in brackets): Kitchen

(pantry, living room, hallway), pantry (kitchen, hall-
way), hallway (kitchen, pantry, living room, broom
closet), living room (kitchen, hallway), broom
closet (hallway) and bedroom (living room, hall-
way). All can be replaced for the synthetic words
easy and medium experiments.

Table 5 lists the actions defined for all basic
experiments, including which can be replaced for
the synthetic words easy and medium experiments.

D Initial Prompts

Prompt template for ’basic’ and pre-exploration
variant instances:

You are playing a text adventure game. I
will describe what you can perceive in
the game. You write the single action you
want to take in the game starting with >.
Only reply with an action.
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Figure 11: Average number of turns taken for the first five instances by each model and human for each experiment
category. The averaged optimal number of turns for each experiment category is also given as dotted lines. Dotted
blue line for basic, inventory limit and pre-exploration, red line is for synthetic words experiments.

For example:
> open cupboard

Your goal for this game is: $GOAL$

Once you have achieved your goal, write
"> done” to end the game.

Prompt template for limited inventory variant in-
stances:

You are playing a text adventure game. I
will describe what you can perceive in
the game. You write the single action you
want to take in the game starting with >.
Only reply with an action.

For example:

> open cupboard

You can have up to two objects in your
inventory at the same time.

Your goal for this game is: $GOAL$

Once you have achieved your goal, write
"> done” to end the game.

Prompt template for synthetic word variant in-
stances:

You are playing a text adventure game. I
will describe what you can perceive in
the game. You write the single action you
want to take in the game starting with >.
Only reply with an action.

For example:

> open cupboard



Action Targets Description Epistemic  Pragmatic  Replaceable

open “container” entities Changes state of closed Yes Yes Yes
container entity to open

close “container” entities Changes state of open No Yes Yes
container entity to closed

take “takeable” entities Removes in/on state for No Yes Yes

“takeable” entity and adds
in(entity, inventory) fact

put “takeable” & Removes in(entity,inventory) No Yes Yes
“container”/“support”  state for “takeable” entity and
entities adds in/on(entity, target) fact

go “room” Changes at state of player entity Yes Yes No

and all entities in inventory
to target room

done - Ends the episode No Yes No
examine entities Results in entity state feedback Yes No No
look room’ Results in current room No No No

description feedback

Table 5: Basic action types used in AdentureGame. Targets are those for which the world state holds a fact assigning
the listed state. Replaceable denotes actions that can be replaced with synthetic words in the easy and medium
synthetic words experiments.

$NEW_WORDS_EXPLANATIONS$ jects to their target receptacles and are labelled with
the target prepositional state.
Your goal for this game is: $GOAL$

Once you have achieved your goal, write
"> done"” to end the game.

A description of the room the player starts in is
appended to complete the initial prompts.

The placeholder $GOAL$ in the templates is re-
placed with the task goal.

Example “easy” difficulty task goal: Put the
pillow on the table, the book on the table
and the plate on the table.

Example “hard” difficulty task goal: Put the

pillow on the counter, the book on the
shelf and the plate on the table.
For the synthetic ~words experiments,
$NEW_WORDS_EXPLANATIONS$ is replaced with
In addition to common actions, you can
followed by a synthetic action word and its
explanation for easy, or a list of synthetic actions
words for medium and hard instances.

E Environment Graphs

To illustrate differences between “easy”’/*hard” en-
vironment and task complexity, Figures 12 and 13
show graph representations of initial game world
states and task targets. House-shaped nodes are
rooms, with arrow edges showing bidirectional con-
nections between them. Round nodes are “movable”
entities, connected to rectangular receptacles and
rooms by edges labelled with their prepositional
state. Dashed edges connect the movable task ob-
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Figure 12: Graph representation of an “easy” basic instance.
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Figure 13: Graph representation of a “hard” basic instance.
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