
Plant in Cupboard, Orange on Table, Book on Shelf
Benchmarking Practical Reasoning and Situation Modelling in a

Text-Simulated Situated Environment
Jonathan Jordan1, Sherzod Hakimov1, David Schlangen1,2

1Computational Linguistics, Department of Linguistics
University of Potsdam, Germany

2German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
firstname.lastname@uni-potsdam.de

Abstract

Large language models (LLMs) have risen to
prominence as “chatbots” for users to interact
via natural language. However, their abilities to
capture common-sense knowledge make them
seem promising as language-based planners of
situated or embodied action as well. We have
implemented a simple text-based environment
— similar to others that have before been used
for reinforcement-learning of agents — that
simulates, very abstractly, a household setting.
We use this environment and the detailed error-
tracking capabilities we implemented for tar-
geted benchmarking of LLMs on the problem
of practical reasoning: Going from goals and
observations to actions. Our findings show that
environmental complexity and game restric-
tions hamper performance, and concise action
planning is demanding for current LLMs.

1 Introduction

Theoretical reasoning, which involves deriving fac-
tual conclusions from given premises, has been
extensively studied in the context of large lan-
guage models (LLMs) (Brown et al., 2020; Wei
et al., 2022; Kojima et al., 2022). However, there
has been less work focusing on practical reason-
ing capabilities (Wallace and Kiesewetter, 2024),
where models must generate actions based on envi-
ronmental observations. While theoretical reason-
ing can be evaluated using reference propositions,
practical reasoning presents unique challenges be-
cause the evaluation requires observing the con-
sequences of actions in an environment. There is
significant interest in using LLMs for embodied
AI tasks in robotics and simulations. (Ichter et al.,
2022). Many of the existing benchmarks (e.g., We-
bArena (Zhou et al., 2024), ALFRED (Shridhar
et al., 2021), AI2-THOR (Kolve et al., 2022), Bal-
rog Arena (Paglieri et al., 2024)) include complex
environments or require computational resources
to execute vision-related tasks.

Goal: Put the potted plant on the table.

You are in a living room now. There is a cupboard, a table and a chair. The
cupboard is closed. There is a passage to a hallway, to a kitchen here.

> put potted plant on table

> take potted plant

> done

> go hallway

You are in a hallway now. There is a potted plant. The potted plant is on the
floor. There are passages to a bedroom, a living room, a broom closet.

You take the potted plant. In your inventory you have a potted plant.

> go living room

You are in a living room now. There is a cupboard, a table and a chair. The
cupboard is closed. There is a passage to a hallway, to a kitchen here.

You put the potted plant on the table.

Bedroom Hallway

Broom
Closet

Pantry

KitchenLiving
Room

Bedroom Hallway

Broom
Closet

Pantry

KitchenLiving Room

Initial State Final State

Figure 1: Sample representation of an episode in our
game. The agent (an LLM) is given a task and
randomly assigned to some room (living room). The
environment provides feedback for every action (go,
take, put, etc.) of an agent. The top part is how the
game is played in a textual world. The bottom part is
the visual representation of initial and final state, also
indicating the situation knowledge gained by the agent.

In contrast, text-based environments such as
TextWorld (Côté et al., 2019), where a situation
is described textually and updated in response to
textual commands, make it possible to study practi-
cal reasoning abilities that go from goal and situa-
tion description to goal-directed action in greater
isolation. We built an even more simplified environ-
ment (called AdventureGame) for testing situated
language environment understanding, spatial navi-
gation, practical and common-sense reasoning, and
instruction following abilities.

Figure 1 (top) shows an example of an interac-
tion, while the bottom part is the visual represen-

ar
X

iv
:2

50
2.

11
73

3v
1

 [
cs

.C
L

]
 1

7
Fe

b
20

25

tation of what has changed going from an initial
state to the final one.

This interaction can be thought of as between
a robot’s “brain” and its perceptual and actuating
parts. Our contributions are as follows:

• A light-weight and extensible IF environment
that includes in-depth fine-grained tracking
of the world state, player observations and
interaction failures.

• A set of experimental instances condensing
an established object delivery task in a typical
home setting, with varied levels of complexity
and task demands of a situated interaction.

• Quantitative comparison of recent large lan-
guage models (LLM) of varying sizes.

• In-depth analysis of contributing factors for
high-performing models.

• Qualitative analysis of model behaviour, ex-
amining good interaction and common failure
cases.

2 Related Work

Interactive Fiction environments have been used to
train and compare agents, starting in the field of Re-
inforcement Learning, using classic IF formats and
interpreters (Côté et al. (2019), Hausknecht et al.
(2020)). These environments combine a specific
set of agent challenges: Partial observability, large
world state and action space, exploration and com-
mon sense reasoning, in addition to the text-only
interaction. It has been shown that performance
in text-only IF environments is transferable to em-
bodied environments (Shridhar et al. (2021), Jansen
(2021)). However, the frameworks established with
these works have convoluted code dependencies
that hinder reproduction.

With the rise of transformer LLMs (Vaswani
et al., 2017), IF environments have also been used
to compare LLM performance in regards to their
world modelling, task solving and planning capa-
bilities (Wang et al. (2022), Tan et al. (2023), Tsai
et al. (2023), Ma et al. (2024), Gioacchini et al.
(2024)). These works find that direct interaction
with IF environments is challenging for LLMs, al-
though they have a substantial advantage regard-
ing common sense world knowledge compared to
RL agents. Few works, however, have provided
fine-grained success and failure metrics, hindering
interpretation.

Recently, IF-based environments have been used
to compare agent systems that incorporate LLMs to

leverage their common sense world knowledge and
reasoning capabilities (Wang et al. (2022), Basava-
tia et al. (2024), i.a.). Theses agent systems involve
extensive augmentation around LLMs, with Re-
trieval Augmented Generation, multi-stage prompt-
ing and external planners and verifiers to guide the
LLM (Park et al. (2023), Valmeekam et al. (2023),
Tikhonov (2024), Jansen et al. (2024), Li et al.
(2025), i.a.). A number of works have LLM agents
generate entire solution plans based on fully observ-
able world states without direct interaction, which
makes automated evaluation easier but foregoes
examining incremental world modelling and ex-
ploration (Xie et al. (2023), Silver et al. (2022),
i.a.).

AdventureGame is filling a gap in assessing the
performance of unassisted LLMs, tapping into
claimed capabilities with minimal guidance. Ad-
ventureGame provides observations of action out-
comes to the LLM directly each turn, combining
planning and execution.

3 AdventureGame: IF Environment

In this section, we describe the details of the game.
A simplified illustration is given in Figure 2, where
an LLM controls an agent to perform the given task.
We implemented the game using the clembench
framework (Chalamalasetti et al., 2023) (prompts
are provided in Appendix 10).

3.1 Task Definition

Interactive Fiction games can be considered par-
tially observable Markov Decision processes (Kael-
bling et al., 1998), with the player having only par-
tial information about the game’s world state from
textual observations. The player must first discover
all task-relevant locations and objects, making ex-
ploration as much a part of solution strategies as ef-
fectively executing a plan for manipulating objects
to reach the game’s goals. To do so successfully,
the player has to model environment states (like
room connections and locations of objects), as well
as the large action space and state transitions result-
ing from actions, especially over multiple turns.

The task is defined by the tuple ⟨G,S,A,O, T ⟩
with a set of goal states G, state space S, valid
action space A, observation space O (including
IF interpreter feedback), and transition function
T : S ×A → S.

An agent with policy π makes predictions at
time step t based on goals in G and memory mt =

Turn 1-2 Turn 3-4 Turn 5-7 Turn 8-13

Figure 2: Simplified illustration of AdventureGame interaction. The agent is controlled by an LLM. The task is
put the plate, book and pillow on the table (marked by green crosshair). The agent starts in the pantry. Unexplored
rooms are gray. The agent first goes to the kitchen, takes the plate from the counter (Turn 1-2), then goes to the
living room, takes the book (Turn 3-4). Next, it goes to the hallway, and from there to the bedroom where it picks up
the pillow (Turn 5-7), then it returns to the living room, puts the carried objects on the table (Turn 8-13).

{oj , aj , oj+1, aj+1, ...ot}, 0 ≤ j < t, which is a
sequence of actions and observations. This agent
trajectory τ = [s0, a0, s1, a1, ...st] is formulated
by policy and environmental state transitions as
below where a time step t is one turn of the game:

pπ(τ) = p(s0)
T∏
t=0

π(at|G, st,mt)τ(st+1|st, at)

All state transitions are deterministic, so only the
actions generated by the LLM as text commands
determine the agent’s trajectory. Observations are
likewise deterministic. We assume that the lan-
guage model models an underlying policy, tapping
into the capabilities under examination.

3.2 Interaction

World state, representing a temporary subset of S,
is stored as a set of fact tuples, describing both
mutable states of entities and immutable states.
Mutable states are at, in, on, open and closed.
Immutable states describe entity types and cate-
gories and are used as conditions for actions (see
Table 3).

Actions are defined in the PDDL (Fox and Long,
2003) format, covering the state changes they enact
(representing T). The action definition also con-
tains a Lark parser grammar snippet that is used to
form the parse-able input command grammar, feed-
back templates for success and individual failures
(covering O) and a Clingo (Gebser et al., 2017) en-
coding snippet of the state changes of the action for
optimal solution solving (representing T as well).

The player is not given a list of currently avail-
able actions but rather has to model the action space
itself. Movement is only allowed to connected
rooms (unlike in Basavatia et al. (2024) and others,
which allow “teleportation”).

Turn Limit: The interaction is limited to fifty

turns, and reaching the limit is recorded as aborting
that episode.

Formatting: An output produced by LLM has
to follow this format (current command followed
by the next commands):

> "COMMAND"
Next actions: "COMMANDS"

The basic task type requires only the first com-
mand line, while the planning task requires both
outputs (see Section 4.1).

Parsing & State Change: The interpreter at-
tempts to parse the command, and if it passes, the
corresponding action is performed in the resolution
phase. State change conditions are checked, and
any resolution failure stops the process. If state
change conditions are fulfilled, the game world
state is updated accordingly, removing and adding
facts in the world state. All changes in the world
state are recorded. Lastly, the interpreter checks if
changed states are part of the goal state set G and
returns achieved goal states Ga, textual feedback
o ∈ O and any failure that might have occurred in
processing the input command to be recorded.

For the planning variant, this procedure is per-
formed subsequently for each input command in
the “Next actions:” list (corresponding to τP) until
a failure is encountered. World state history is used
to revert any state changes resulting from a planned
action sequence.

An episode is ended by the player using the
’done’ action or reaching the turn limit. Once the
episode ends, goal states achieved as of the last turn
are recorded - meaning that goal states achieved
intermittently are not considered for metrics.

Exploration Tracking: All commands, state
changes, observed locations and objects are
recorded for each turn, including errors while ex-
ecuting the commands. We label each action (in-

spired by Kirsh and Maglio (1994)) for being epis-
temic and pragmatic. An action is epistemic when
it improves a player’s perception of the game situa-
tion without directly progressing towards the goal1

and pragmatic when the action directly works to-
wards reaching the goal. Then, we calculate epis-
temic gain by counting how many world state facts
the player newly observes as a result.

3.3 Challenges & Examined Capabilities

The task includes various challenges and their
accompanying capabilities that are targeted here,
purely in text. Despite the environment being ab-
stract compared to physically embodied agents,
these capabilities are required for autonomous per-
formance regardless of the modality.
World state modelling: The agent must correctly
recall objects’ states and locations over multiple
turns under partial observability by consecutively
integrating the observations provided by the game.
Situated action selection: Another essential capa-
bility is selecting appropriate actions in a specific
situation from many options, especially without
any guidance to limit this action space.
Common sense reasoning & world knowledge:
The agent should perform action selection, and
locating objects in their ordinary locations requires
world knowledge and reasoning.
Spatial reasoning & exploration: Navigation re-
lies on spatial modelling of the game environment,
especially for going through multiple locations.
Sufficient exploration of the environment is nec-
essary to correctly fulfil the task, which entails a
certain level of trial and error, with actions that are
not immediately useful to further the task goal.
Self-correction: The capability to revise and cor-
rect an assumed world model in the face of new
observations is crucial to any situated task solving.
An agent should be capable of verifying the cor-
rectness of its world model through its interactions
with the world and actively do so.

4 Experimental Setup

4.1 Game Instances

Different instances of the game are generated us-
ing the Clingo Answer Set Programming library2,

1Kirsh and Maglio’s example is moving a Tetris tile to
the leftmost position to be sure about its position instead of
moving it towards the location that is most beneficial to put it
down in.

2https://potassco.org/clingo/python-api/
current/clingo/

which wraps the Clingo solver (Gebser et al., 2017).
We create challenging instances by varying three
factors for the experiments, as given below.

Task variants: we have two variants of the task:
basic & planning. The core task in our experiments
is a home delivery task in which the agent is ex-
pected to deliver three objects to target receptacles
in a common home environment. For the planning
variant, models are prompted also to list the next
actions. Our hypothesis is that the planning variant
is more challenging because it requires knowing
more about the environment, and being able to
adapt across turns. We want to analyse whether
models have any strategy or if they simply invent
arbitrary plans.

Delivery difficulty: it has two levels: easy &
hard. The easy level means that goal objects are
not inside closed containers (easily accessible, im-
mediately observable) and are located near the tar-
get receptacle in the initial world state. The hard
level means that goal objects are initially hidden
in closed containers, each needs to be delivered
to a different target, and there are longer paths be-
tween initial goal object locations and their targets.
Our hypothesis is that it is challenging for models
to navigate multi-step actions to reach a goal be-
cause hidden objects require epistemic actions, far
away objects require keeping the objective in mind
over several steps (increases the number of steps to
reach goals).

Inventory limit: by default, the number of ob-
jects the agent can carry is unlimited. We create
another level by setting the limit to two. We want
to analyse whether models lean towards strategic
use of the resource “inventory” and being efficient,
when they have limit.

We have eight experiments (permutation of task
types, object difficulties, inventory limit) (16 in-
stances in each), corresponding to 128 instances.

4.2 Metrics
Framework-specific metrics: The clembench
framework includes two main metrics: Played &
Quality Score. The game finishes successfully only
when a model produces “> done” as the last action
and all goals have been achieved. The game is
aborted when a model does not follow formatting
requirements (see Section 3.2) or reaches the maxi-
mum turn limit, which is 50. Played is the ratio of
instances that were not aborted. The quality score
measures how many episodes have all their goal
states reached at the end. Producing the “> done”

https://potassco.org/clingo/python-api/current/clingo/
https://potassco.org/clingo/python-api/current/clingo/

action command without achieving all goal states
is considered a lost episode. In cases where all goal
states are achieved and “> done” is also generated,
then the episode is successful.

Finally, to rank the benchmarked models, the
framework includes a metric called clemscore,
the macro-average quality score multiplied by the
macro-average proportion of played games across
all experiments.

Game-specific metrics: We have a specific met-
ric to keep track of achieved goals. It is the ratio
between achieved goal states Ga and all goal states
G: Goal Success Rate (GSR) = |Ga|

|G| × 100.
For the planning variant of the task, we have the

plan viability metric. It is calculated as the fraction
of successfully processed plan actions a+t over the

number of total plan actions at in turn t: vt =
|a+t |
|at| .

Then, we calculate the average plan viability in an
episode as the average of each turn (except the first

turn): viability =

∑T

t=1
vt

T .

4.3 Evaluated Models

We evaluated open-weight and commercial mod-
els (with temp=0). We included recent commer-
cial models such as: o3-mini (Jan ’25), GPT-
4o (Aug ’24) Claude-3-5 (Sonnet, Oct ’24),
and Gemini-2.0-Flash (Feb ’25). We also in-
cluded recent open-weight models: Llama-3.1 (8B,
70B, 405B) (Grattafiori et al., 2024), Llama-3.3
(70B), Qwen2 (72B) (Yang et al., 2024), Qwen2.5
(Coder-32B, 72B, Max) (Qwen et al., 2025), Sky-
T1-32B (NovaSky-Team, 2025) and Deepseek-
v3 (DeepSeek-AI et al., 2024). We used the APIs
of the respective commercial models. We ran
open-weight models on two NVIDIA A100 GPUs.
Deepseek-v3, Llama-3.1-405B, and Qwen-Max
were run via the OpenRouter API.

5 Results

5.1 Overall Comparison

Table 1 shows the main scores for the benchmarked
models. Larger models achieve higher quality
scores and better conform to the prompted output
format. Most commercial models achieve higher
scores than open-weight models (11 points between
Claude-3.5 and Llama-3.1-70B) except Gemini-2.0,
which scores lower on both Played and Quality
Score. Another observation is that all high-ranking
models can play the game (follow instructions) but
lack performance in solving the task. Next, we

Model clem
score % Played Quality

Score
Goal
Rate

o3-mini 63.1 85.9 73.4 79.7
Claude-3.5 62.5 93.0 67.2 76.3
GPT-4o 50.2 94.5 53.1 71.6
Qwen-max 47.4 90.6 52.3 68.8
Llama-3.1-70B 41.4 94.5 43.8 62.8
DeepSeek-V3 40.3 87.5 46.1 64.8
Llama-3.3-70B 39.5 95.3 41.4 60.2
Llama-3.1-405B 31.7 71.1 44.5 62.2
Gemini-2.0 25.0 68.0 36.7 50.5
Qwen2.5-32B 22.4 60.9 36.7 57.6
Qwen2-72B 18.8 58.6 32.0 49.5
Qwen2.5-72B 16.0 58.6 27.3 49.2
Llama-3.1-8B 13.0 46.1 28.1 40.1
Sky-T1-32B 5.7 28.9 19.5 31.8

Table 1: Overall benchmark scores for models.

analyse the cases deeper to uncover which factors
contribute to low scores.

5.2 In-depth Analysis

In this section, we analyse different factors that
contributed to certain models’ better performance
than others and investigate others.

5.2.1 Difficulty Levels
We compared five high-ranking models across all
experiments (see Table 2). For smaller models,
both higher complexity and limited inventory lead
to worse performance, with the effects of both com-
pounding. Specifically for the home delivery task,
Claude-3.5 and o3-mini perform equally for the
easy and hard levels. At the same time, other mod-
els tend to struggle more with the hard episodes.
One assumption on better performance on hard
level (goal objects are hidden inside containers)
is that the more complex tasks inherently require
more exploration, and multiple target receptacles
are less semantically similar to others. Adding an
inventory limit (max two objects) resulted in mixed
outcomes. Some models got better results (o3-mini
on hard, GPT-4o on easy), but the general trend
is that adding a limit on the inventory was more
challenging.

5.2.2 Action Planning
The planning variants of experiments are found to
be more challenging than the home delivery one,
especially for smaller models (see Table 2). The
models not only have to generate the immediate
subsequent action but also the following actions.
For instance, models generate generic plans such
as “find apple and table” (where the goal statement
is “Put the apple on the table”) in the early turns be-

0 20 40 60 80 100
% of all episodes

Sky-T1-32B

Llama-3.1-8B

Qwen2.5-72B

Qwen2-72B

Qwen2.5-32B

Gemini-2.0

Llama-3.1-405B

Llama-3.3-70B

DeepSeek-V3

Llama-3.1-70B

Qwen-max

GPT-4o

Claude-3.5

o3-mini

17.2

28.1

25.8

31.2

35.2

36.7

44.5

40.6

46.1

43.8

52.3

53.1

67.2

73.4

11.7

18.0

32.8

27.3

25.8

31.2

26.6

54.7

41.4

50.8

38.3

41.4

25.8

12.5

71.1

53.9

41.4

41.4

39.1

32.0

28.9

4.7

12.5

5.5

9.4

5.5

7.0

14.1

Success Lose Aborted

Figure 3: Successful, lost and aborted episode ratios.

cause, at those stages, the environment has not been
fully explored. Such plans are not parsable and re-
sult in lower plan viability. In the later turns, the
plan viability scores go higher a bit (e.g., Claude-
3.5) but still fluctuate within a certain margin (see
Figure 12). Overall, models struggled with this
task because they moved to a more abstract level of
planning (“find kitchen”) due to the lack of world
information in the initial phases.

Clau
de

-3.
5

o3
-m

ini

GPT-4
o

Qwen
-m

ax

Lla
ma-3

.1-
70

B

Lla
ma-3

.3-
70

B

Dee
pS

ee
k-V

3

Lla
ma-3

.1-
40

5B

Qwen
2.5

-32
B

Gem
ini

-2.
0

Qwen
2-7

2B

Qwen
2.5

-72
B

Lla
ma-3

.1-
8B

Sky
-T1-3

2B
0

20

40

60

80

N
um

be
r o

f a
bo

rte
d

ep
is

od
es

Turn limit reached
Missing tag ">"
Missing tag ">", finish keyword in output
Missing Next actions

Figure 4: Distribution of causes for aborted episodes.

5.2.3 Successful, Lose & Aborted Episodes
Figure 3 shows the distribution of episodes across
Success (all goal states are reached), Lose (if any
goal state is not reached), or Aborted (formatting
was not followed through or turn limit reached).
The best performing two models Claude-3.5 and
o3-mini, solve most of the episodes (>=60%) and
have lower numbers of lost episodes. The main

0 5 10 15 20 25 30 35
Turns

0.25

0.50

0.75

O
bs

er
ve

d
go

al
 o

bj
ec

ts

Llama-3.1-8B
Qwen2.5C-32B

Llama-3.3-70B
o3-mini

Claude3.5

0 5 10 15 20 25 30 35
Turns

0

20

40

60

Ep
is

te
m

ic
 g

ai
n

Figure 5: Average observed goal objects ratio and
average cumulative effective epistemic gain over all
episodes.

contributing factor for other models is that they
either lose episodes or have them aborted due to
violating instruction formatting requirements. Fig-
ure 4 shows the distribution of causes for aborted
episodes. The most common issue for Claude-3.5
and o3-mini is that they missed the tag “>” before
an action statement. Some of the other models
struggle with finishing the game by producing “>
done” and reaching the maximum turn limit (50),
or Llama3.1-405B did not generate the “Next ac-
tions” for the planning experiment. Overall, we
can conclude that the main factor for the aborted
cases is models not knowing when to stop the game,
i.e., failing to recognise that the current situation is
a goal state.

5.2.4 Exploration
All tested models have issues with sufficiently ex-
ploring the game environment: Rooms contain-
ing task-relevant objects are not entered, and con-
tainers containing task-relevant objects are not
opened. Figure 5 (top) shows the average ratio
of observed goal entities per turn. We can see
that high-performing models such as o3-mini and
Claude-3.5 explore more and discover more re-
quired objects compared to smaller models such
as Llama-3.1-8B or Qwen2.5C-32B. For smaller
models, we assume this is due to a lack of spatial
modelling and the inability to handle long input
contexts. In comparison, larger models show a gen-
eral aversion to entering other rooms, especially if
they have encountered objects that are semantically
similar to task objects. Figure 5 (bottom) shows
average epistemic gain per turn. Like the earlier
observation, higher-performing models make more
effective epistemic actions. Thus, we can confirm
that such exploration behaviour of models results

Living Room Kitchen Task: plant on side table,
plate on shelf, mop in
freezer
(in bedroom at turn 16)

> go to hallway
GM: You can't go to a
hallway from here.

> go to living room
> go to hallway
> go to broom closet
> take mop

> go to hallway
> go to living room
> go to kitchen
> go to pantry

Claude3.5-Sonett
basic-hard-limited
episode 15
Turn 16-24

Hallway

Pantry

Broom Closet

Bedroom

Figure 6: Claude-3.5 correcting navigation.
Living Room Kitchen Task: pillow on table,

book on table, plate on
table
(put pillow on side table
two turns earlier)

> put plate on table
Next actions: go living
room, take pillow, go
kitchen, put pillow on
table, go living room,
take book, go kitchen,
put book on table, done

o3-mini
planning-easy-limit
episode 10
Turn 6

Hallway Pantry

Broom ClosetBedroom

1

2

3 4
5

6

7
8

9

Figure 7: o3-mini planning nine turns ahead.

Living Room Kitchen
Task: pillow on table, book
on table, plate on table
(carries task objects,
hallway not visited before)

> go to hallway
> go to living room
> put book on side table
> put plate on side table
> put pillow on side table
> done

Qwen2.5-Coder-32B
basic-easy episode 14
Turn 15-20

Hallway Pantry

Broom ClosetBedroom

Figure 8: Qwen2.5-32B exploring insufficiently.

Living Room

“Shelf”

Kitchen
Task: plant in cupboard,
orange on table, book on
shelf

> put book on counter
Next actions: since the book
is not explicitly stated to
be put on a shelf, but
rather "on the shelf" could
be interpreted as putting it
in a high place, and there
is no explicit shelf in the
kitchen, consider the task
complete if the potted plant
is in the cupboard and the
book is in a relatively high
place, or look for an actual
shelf to put the book on, or
realize that the task is
almost complete and the
orange is the only

Llama3.3-70B
planning-hard episode 8
Turn 30-33

Hallway Pantry

Broom ClosetBedroom

Figure 9: Llama3.3-70B hallucinating.

in higher scores in both discovering other rooms
and relevant objects in them.

5.3 Qualitative Analysis

5.3.1 Navigation
All models make navigation errors. These errors
occur despite the observation feedback mention-
ing passages to all connected rooms every time
the player enters a room. While lower-performing
models repeat this type of failure many times in
individual episodes, better-performing models ac-
quire the game’s rule that allows movement only to
connected rooms and self-correct their navigation
after receiving feedback. This type of failure most
often occurs in the turn after a task object has been
picked up or delivered.

Figure 6 illustrates this: Claude3.5 attempts to
"> go to hallway" from the unconnected bedroom
(red arrow) and is told that this is not possible. It
then respects the connection requirement for the
rest of the episode and goes to the broom closet
to take the mop and further to the pantry with the
freezer without attempting to go to these known
rooms directly.

5.3.2 Planning & Self-correction
Abstract “next actions” aid better-performing mod-
els in adequately exploring the environment and

navigating by keeping room layout and task require-
ments in recent context. Once sufficient informa-
tion about the game situation is acquired, leading
models produce extended, fully executable plans
demonstrating good planning ability.

Figure 7 illustrates o3-mini making the longest
viable plan: After finding the pillow and placing it
on the first observed side table in the living room,
it enters the kitchen and observes the remaining
task objects. Next, it puts the plate on the table.
It correctly plans nine turns ahead, self-correcting
placement of pillow and book: Moving between
the living room and kitchen twice, taking a task
object each time and placing it on the table, pre-
venting inventory limit infractions, and finishing
the episode.

5.3.3 Exploration
Figure 8 illustrates insufficient exploration:
Qwen2.5-Coder-32B regularly checks connected
rooms, the hallway in this case, which largely con-
tributes to its performance. However, it does not
do this thoroughly enough, missing the table in the
pantry and incorrectly placing the task objects on
the side table, as most models do.

5.3.4 Hallucination
Hallucinations are common, with all models at-
tempting to interact with objects that are not men-

tioned to be present and equating semantically sim-
ilar objects. These hallucinations often persist over
entire episodes once established, regardless of later
observations contradicting them. A more concern-
ing type of hallucination occurs in larger models
that reason in their plans: The models reason (in of-
ten somewhat incomprehensible fashion) about the
identity of objects, coming to wrong conclusions
which they then follow, disregarding observations.

Figure 9 illustrates this with Llama3.3-70B: Af-
ter sufficiently exploring, finding and examining
the shelf while carrying the book, the model goes to
the kitchen and puts the book on the first observed
counter. It then produces post-hoc reasoning for
this action, contradicting the task, providing a hap-
hazard interpretation, using incoherent ’evidence’
and asserting that the task is fulfilled.

6 Discussion

Compared to prior works and classic IF games, the
presented environment and task are deliberately
straightforward. While we do not provide human
baseline data for our experiments, we are sure that
this environment is trivial for humans to interact
with, especially with IF familiarity. Despite the
tested models showing this familiarity by produc-
ing classic IF actions with minimal prompting, they
struggle with even the simple underlying common
rules of this game, suggesting that if they emulate
human capabilities at work when playing Adven-
tureGame, they do so only in rudimentary fashion.

Behaviour differs not only between models but
also between episodes with the same model, sug-
gesting an impact of the textual surface form of
the interaction. This is likely an effect of model
architecture and foundation training paradigms re-
lying solely on next-token prediction. More so-
phisticated behaviour hinting at underlying capa-
bilities emerges with larger models, with training
data amount and content playing the most promi-
nent role. Structured training data like code and
reinforcement learning towards aligning with in-
structions are reflected in model behaviour, as can
be seen with Qwen2.5-Coder-32B strictly follow-
ing the order of delivery given in the initial prompt.

Specifically, the highest-scoring models show
pragmatic reasoning capabilities and can suffi-
ciently model situations to infer the best course of
action over long-turn sequences. The unexpectedly
surfaced reasoning in “Next actions” shows that
models can often communicate intermediate task

demands and requirements, suggesting abstraction
on multiple levels. However, we find that current
LLMs’ reasoning can be detrimental to embodied
interaction, as the trained theoretical reasoning re-
quires no grounding and can lead to models dis-
regarding actual observations that should instead
ground model behaviour. Relying solely on lan-
guage without external grounding may be detri-
mental to physical or otherwise embodied agents.
Recently popular embedded LLM agents aim to
mitigate this, but they fall short in ’grounding’ the
interaction by feeding language tokens into trans-
former LLMs instead of extending inputs to actual
embodied feedback data. Certain failures might
result from multi-turn conversation training and
natural language feedback: Models break format
to explain things to the ’user’ in response (e.g., "I
don’t know how to interpret this ’look’ action.")
and attempts to move directly to a known room
might be based on seemingly established conversa-
tional common ground. Thus, good emulation of
conversational pragmatics can lead to worse perfor-
mance.

7 Conclusion

AdventureGame performance increases with model
size, progressing from generally bad situation mod-
elling in smaller models to a middle ground of
good situation modelling but frequent interaction
failures, to only a pair of SOTA models fulfilling
the given task in more than two thirds of cases.

Our experiments reveal the practical reasoning
capabilities of current LLMs, with their leverage
of common-sense world knowledge supporting em-
bodied interaction in a text-based home environ-
ment. Tracking of the game world state interac-
tion, agent observations and fine-grained failures
show that while the required capabilities emerge in
current LLMs, there are individual strengths and
weaknesses. Reasoning more strongly grounded in
embodied feedback may improve model interaction
in the future. We look forward to building upon the
current AdventureGame experiments with future
examinations of in-context learning and pragmatic
language capabilities.

Limitations

The current study is restricted to only English in
its current state. While we have yet to do this,
translating the prompts and adapting the underlying
grammar entries is possible for other languages,

too.
The performance we measured here may not

transfer to other modalities with more sophisti-
cated demands, like visually or physically embod-
ied agents or robots. Shridhar et al. (2021) found
that while training in text-only environments is
faster and less resource-intensive than training in
the AI2Thor framework, agents trained in text-only
environments struggled to adapt to the require-
ments of more complex embodiment properly.

Ethics Statement

In academic research, using paid proprietary APIs
with underlying models about which little is known
(training data, model architecture) is less than ideal.
Currently, the models benchmarked here are the
high-performing ones that are commercially used.
We hope that more open models with high per-
formance will be released soon and that proper
research can be done on them.

References
Shreyas Basavatia, Keerthiram Murugesan, and Shivam

Ratnakar. 2024. Starling: Self-supervised training of
text-based reinforcement learning agent with large
language models. Preprint, arXiv:2406.05872.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, and et al.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Kranti Chalamalasetti, Jana Götze, Sherzod Haki-
mov, Brielen Madureira, Philipp Sadler, and David
Schlangen. 2023. Clembench: Using game play to
evaluate chat-optimized language models as conver-
sational agents. Preprint, arXiv:2305.13455.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, Wendy Tay, and Adam Trischler. 2019.
Textworld: A learning environment for text-based
games. In Computer Games, pages 41–75, Cham.
Springer International Publishing.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, and et al.
2024. Deepseek-v3 technical report. Preprint,
arXiv:2412.19437.

Maria Fox and Derek Long. 2003. Pddl2. 1: An ex-
tension to pddl for expressing temporal planning do-
mains. Journal of artificial intelligence research,
20:61–124.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
and Torsten Schaub. 2017. Multi-shot ASP solving
with clingo. CoRR, abs/1705.09811.

Luca Gioacchini, Giuseppe Siracusano, Davide Sanvito,
Kiril Gashteovski, David Friede, Roberto Bifulco,
and Carolin Lawrence. 2024. Agentquest: A modular
benchmark framework to measure progress and im-
prove llm agents. arXiv preprint arXiv:2404.06411.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, and et al.
2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7903–7910.

Brian Ichter, Anthony Brohan, Yevgen Chebotar,
Chelsea Finn, Karol Hausman, Alexander Herzog,
and et al. 2022. Do as I can, not as I say: Grounding
language in robotic affordances. In Conference on
Robot Learning, CoRL 2022, 14-18 December 2022,
Auckland, New Zealand, volume 205 of Proceed-
ings of Machine Learning Research, pages 287–318.
PMLR.

Peter Jansen, Marc-Alexandre Côté, Tushar Khot,
Erin Bransom, Bhavana Dalvi Mishra, Bod-
hisattwa Prasad Majumder, Oyvind Tafjord, and Peter
Clark. 2024. Discoveryworld: A virtual environment
for developing and evaluating automated scientific
discovery agents. Preprint, arXiv:2406.06769.

Peter A Jansen. 2021. A systematic survey of text
worlds as embodied natural language environments.
arXiv preprint arXiv:2107.04132.

Leslie Pack Kaelbling, Michael L. Littman, and An-
thony R. Cassandra. 1998. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence, 101(1):99–134.

David Kirsh and Paul Maglio. 1994. On distinguishing
epistemic from pragmatic action. Cognitive Science,
18(4):513–549.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Matt Deitke,
Kiana Ehsani, Daniel Gordon, Yuke Zhu, Aniruddha
Kembhavi, Abhinav Gupta, and Ali Farhadi. 2022.
Ai2-thor: An interactive 3d environment for visual ai.
Preprint, arXiv:1712.05474.

Lark parser. 2024. [link].

https://arxiv.org/abs/2406.05872
https://arxiv.org/abs/2406.05872
https://arxiv.org/abs/2406.05872
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2305.13455
https://arxiv.org/abs/2305.13455
https://arxiv.org/abs/2305.13455
https://arxiv.org/abs/2412.19437
https://www.jair.org/index.php/jair/article/view/10352
https://www.jair.org/index.php/jair/article/view/10352
https://www.jair.org/index.php/jair/article/view/10352
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/abs/multishot-asp-solving-with-clingo/FAED3429900D84CDD5155326A36548F2
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/abs/multishot-asp-solving-with-clingo/FAED3429900D84CDD5155326A36548F2
https://arxiv.org/abs/2407.21783
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://arxiv.org/abs/2406.06769
https://arxiv.org/abs/2406.06769
https://arxiv.org/abs/2406.06769
https://arxiv.org/abs/2107.04132
https://arxiv.org/abs/2107.04132
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/0364-0213(94)90007-8
https://doi.org/10.1016/0364-0213(94)90007-8
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://arxiv.org/abs/1712.05474
https://github.com/lark-parser/lark

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui
Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
Tony Lee, Li Erran Li, Ruohan Zhang, Weiyu Liu,
Percy Liang, Li Fei-Fei, Jiayuan Mao, and Jiajun
Wu. 2025. Embodied agent interface: Benchmark-
ing llms for embodied decision making. Preprint,
arXiv:2410.07166.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn llm agents. arXiv
preprint arXiv:2401.13178.

NovaSky-Team. 2025. Sky-t1: Fully open-source rea-
soning model with o1-preview performance in $450
budget.

Davide Paglieri, Bartłomiej Cupiał, Sam Coward,
Ulyana Piterbarg, Maciej Wołczyk, Akbir Khan, Ed-
uardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob
Fergus, Jakob Nicolaus Foerster, Jack Parker-Holder,
and Tim Rocktäschel. 2024. Balrog: Benchmark-
ing agentic llm and vlm reasoning on games. arXiv
preprint arXiv:2411.13543.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th an-
nual acm symposium on user interface software and
technology, pages 1–22.

Qwen, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, and et al. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2021. Alfworld: Aligning text and
embodied environments for interactive learning.
Preprint, arXiv:2010.03768.

Tom Silver, Varun Hariprasad, Reece S Shuttle-
worth, Nishanth Kumar, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. 2022. Pddl planning with
pretrained large language models. In NeurIPS 2022
foundation models for decision making workshop.

Qinyue Tan, Ashkan Kazemi, and Rada Mihalcea. 2023.
Text-based games as a challenging benchmark for
large language models.

Alexey Tikhonov. 2024. Plugh: A benchmark for spa-
tial understanding and reasoning in large language
models. arXiv preprint arXiv:2408.04648.

Chen Feng Tsai, Xiaochen Zhou, Sierra S Liu, Jing
Li, Mo Yu, and Hongyuan Mei. 2023. Can large
language models play text games well? current
state-of-the-art and open questions. arXiv preprint
arXiv:2304.02868.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the

planning abilities of large language models - a criti-
cal investigation. In Advances in Neural Information
Processing Systems, volume 36, pages 75993–76005.
Curran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

R. Jay Wallace and Benjamin Kiesewetter. 2024. Practi-
cal Reason. In Edward N. Zalta and Uri Nodelman,
editors, The Stanford Encyclopedia of Philosophy,
Fall 2024 edition. Metaphysics Research Lab, Stan-
ford University.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint
arXiv:2203.07540.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. 2023. Translating natural language
to planning goals with large-language models. arXiv
preprint arXiv:2302.05128.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
and et al. 2024. Qwen2 technical report. Preprint,
arXiv:2407.10671.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024. Webarena: A realistic web envi-
ronment for building autonomous agents. Preprint,
arXiv:2307.13854.

8 Result details

Figure 10 shows percentages of failures by process-
ing phase. Claude3.5 and Llama-3.1-405B produce
more successful actions than the higher-scoring
o3-mini.

Figure 11 shows percentages of entity-related
failures. o3-mini and GPT-4o do not have inventory
limit failures, while Qwen2.5-32b and Qwen2.5-
72b have low amounts.

Figure 12 shows fluctuating average plan viabil-
ity for a selected set of models.

Table 2 shows individual experiment perfor-
mance for selected well-performing models.

https://arxiv.org/abs/2410.07166
https://arxiv.org/abs/2410.07166
https://novasky-ai.github.io/posts/sky-t1
https://novasky-ai.github.io/posts/sky-t1
https://novasky-ai.github.io/posts/sky-t1
https://dl.acm.org/doi/abs/10.1145/3586183.3606763
https://dl.acm.org/doi/abs/10.1145/3586183.3606763
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=2g4m5S_knF
https://openreview.net/forum?id=2g4m5S_knF
https://arxiv.org/abs/2408.04648
https://arxiv.org/abs/2408.04648
https://arxiv.org/abs/2408.04648
https://arxiv.org/abs/2304.02868
https://arxiv.org/abs/2304.02868
https://arxiv.org/abs/2304.02868
https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2022.emnlp-main.775/
https://aclanthology.org/2022.emnlp-main.775/
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://ui.adsabs.harvard.edu/abs/2023arXiv230205128X/abstract
https://ui.adsabs.harvard.edu/abs/2023arXiv230205128X/abstract
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

Model Experiment clemscore Quality % Played % Lose Goal Rate Plan Viability

o3-mini

basic-easy 76.2 81.2 93.8 12.5 85.4 0.0
basic-easy-invlimit 76.2 81.2 93.8 12.5 81.2 0.0
basic-hard 71.1 81.2 87.5 6.2 87.5 0.0
basic-hard-invlimit 87.9 93.8 93.8 0.0 93.8 0.0
planning-easy 55.9 68.8 81.2 12.5 68.8 20.9
planning-easy-invlimit 50.8 62.5 81.2 18.8 62.5 32.8
planning-hard 37.5 50.0 75.0 25.0 72.9 6.2
planning-hard-invlimit 55.9 68.8 81.2 12.5 85.4 13.5

Claude-3.5

basic-easy 75.0 75.0 100.0 25.0 75.0 0.0
basic-easy-invlimit 68.8 68.8 100.0 31.2 68.8 0.0
basic-hard 70.3 75.0 93.8 18.8 91.7 0.0
basic-hard-invlimit 58.6 62.5 93.8 31.2 85.4 0.0
planning-easy 58.6 62.5 93.8 31.2 62.5 16.8
planning-easy-invlimit 68.8 68.8 100.0 31.2 68.8 16.4
planning-hard 60.2 68.8 87.5 18.8 85.4 9.2
planning-hard-invlimit 42.2 56.2 75.0 25.0 72.9 5.7

GPT-4o

basic-easy 68.8 68.8 100.0 31.2 70.8 0.0
basic-easy-invlimit 75.0 75.0 100.0 25.0 77.1 0.0
basic-hard 41.0 43.8 93.8 50.0 77.1 0.0
basic-hard-invlimit 28.1 37.5 75.0 43.8 75.0 0.0
planning-easy 62.5 62.5 100.0 37.5 62.5 22.6
planning-easy-invlimit 62.5 62.5 100.0 37.5 62.5 24.1
planning-hard 35.2 37.5 93.8 56.2 72.9 11.9
planning-hard-invlimit 35.2 37.5 93.8 56.2 75.0 21.2

Llama-3.1-70B

basic-easy 50.0 50.0 100.0 50.0 50.0 0.0
basic-easy-invlimit 52.7 56.2 93.8 37.5 56.2 0.0
basic-hard 35.2 37.5 93.8 56.2 68.8 0.0
basic-hard-invlimit 32.8 37.5 87.5 50.0 68.8 0.0
planning-easy 62.5 62.5 100.0 37.5 62.5 41.1
planning-easy-invlimit 56.2 56.2 100.0 43.8 56.2 52.0
planning-hard 16.4 18.8 87.5 68.8 68.8 14.4
planning-hard-invlimit 29.3 31.2 93.8 62.5 70.8 24.0

Qwen2.5-32B

basic-easy 70.3 75.0 93.8 18.8 79.2 0.0
basic-easy-invlimit 54.7 62.5 87.5 25.0 72.9 0.0
basic-hard 6.2 12.5 50.0 37.5 52.1 0.0
basic-hard-invlimit 1.6 6.2 25.0 18.8 39.6 0.0
planning-easy 37.5 50.0 75.0 25.0 60.4 23.2
planning-easy-invlimit 37.5 50.0 75.0 25.0 64.6 29.7
planning-hard 12.5 25.0 50.0 31.2 52.1 10.4
planning-hard-invlimit 3.9 12.5 31.2 31.2 39.6 11.6

Table 2: Scores by variant experiment for selected well-performing models. % Lose is the percentage of episodes
that were finished without fulfilling all three task goals. basic refers to the home delivery task.

0 20 40 60 80 100
% of all actions

Sky-T1-32B

Llama-3.1-8B

Qwen2.5-72B

Qwen2-72B

Qwen2.5-32B

Gemini-2.0

Llama-3.1-405B

Llama-3.3-70B

DeepSeek-V3

Llama-3.1-70B

Qwen-max

GPT-4o

Claude-3.5

o3-mini

successful actions
resolution failure

parsing failure

Figure 10: Successful and failed action quotas by IF
interpreter processing phase.

9 Actions

Table 3 lists the actions defined for the experiments.

10 Initial Prompts

Prompt template for ’basic’ variant instances:

You are playing a text adventure game. I
will describe what you can perceive in
the game. You write the single action you
want to take in the game starting with >.
Only reply with an action.
For example:
> open cupboard

Your goal for this game is: $GOAL$

Once you have achieved your goal, write
"> done" to end the game.

$INITIAL ROOM DESCRIPTION$

Prompt template for ’basic’ with limited inventory
variant instances:

You are playing a text adventure game. I
will describe what you can perceive in
the game. You write the single action you
want to take in the game starting with >.
Only reply with an action.
For example:
> open cupboard

You can have up to two objects in your

0 20 40 60 80 100
% of entity failures

Sky-T1-32B

Llama-3.1-8B

Qwen2.5-72B

Qwen2-72B

Qwen2.5-32B

Gemini-2.0

Llama-3.1-405B

Llama-3.3-70B

DeepSeek-V3

Llama-3.1-70B

Qwen-max

GPT-4o

Claude-3.5

o3-mini

inventory limit exceeded
entity trait mismatch
entity state mismatch

entity not accessible
entity already in inventory

Figure 11: Percentages of selected entity-related failures
for all tested models.

inventory at the same time.

Your goal for this game is: $GOAL$

Once you have achieved your goal, write
"> done" to end the game.

$INITIAL ROOM DESCRIPTION$

Prompt template for ’planning’ variant instances:

You are playing a text adventure game. I
will describe what you can perceive in
the game. You write the single action you
want to take in the game starting with >.
Write your plan for your next actions on
the line below your action, starting with
"Next actions:".
For example:
> open cupboard
Next actions: take orange, eat orange

Your goal for this game is: $GOAL$

Once you have achieved your goal, write
"> done" to end the game.

$INITIAL ROOM DESCRIPTION$

Prompt template for ’planning’ with limited inven-
tory variant instances:

You are playing a text adventure game. I
will describe what you can perceive in
the game. You write the single action you

0 5 10 15 20 25 30 35 40 45
Turns

0.0

0.1

0.2

Av
er

ag
e

pl
an

 v
ia

bi
lit

y
Average plan viability over turns over all planning episodes

o3-mini
Claude3.5
Llama-3.3-70B
Qwen2.5C-32B
Llama-3.1-8B

Figure 12: Average plan viability over turns over all episodes.

Action Targets Description Epistemic Pragmatic
open ’container’ entities Changes state of closed Yes Yes

container entity to open

close ’container’ entities Changes state of open No Yes
container entity to closed

take ’takeable’ entities Removes in/on state for No Yes
’takeable’ entity and adds
in(entity,inventory) fact

put ’takeable’& Removes in(entity,inventory) No Yes
’container’/’support’ state for ’takeable’ entity and
entities adds in/on(entity,target) fact

go ’room’ Changes at state of player entity Yes Yes
and all entities in inventory
to target room

done - Ends the episode No Yes
examine entities Results in entity state feedback Yes No

Table 3: Action types used in AdentureGame. Targets are those for which the world state holds a fact assigning the
listed state.

want to take in the game starting with >.
Write your plan for your next actions on
the line below your action, starting with
"Next actions:".
For example:
> open cupboard
Next actions: take orange, eat orange

You can have up to two objects in your
inventory at the same time.

Your goal for this game is: $GOAL$

Once you have achieved your goal, write
"> done" to end the game.

$INITIAL ROOM DESCRIPTION$

The placeholder $GOAL$ in the templates is re-
placed with the task goal.

Example ’easy’ difficulty task goal: Put the
pillow on the table, the book on the table
and the plate on the table.

Example ’hard’ difficulty task goal: Put the
pillow on the counter, the book on the
shelf and the plate on the table.

A description of the room the player is in initially
is inserted at the end of the template, at the location
of $INITIAL ROOM DESCRIPTION$.

11 Environment Graphs

To illustrate differences between ’easy’/’hard’ en-
vironment and task complexity, Figures 13 and 14
show graph representations of initial game world
states and task targets. House-shaped nodes are
rooms, with arrow edges showing bidirectional con-
nections between them. Round nodes are ’movable’
entities, connected to rectangular receptacles and
rooms by edges labelled with their prepositional
state. Dashed edges connect the movable task ob-
jects to their target receptacles and are labelled with
the target prepositional state.

kitchen1

pantry1 hallway1 livingroom1

broomcloset1 bedroom1

kitchen1floor1

at

pantry1floor1

at

hallway1floor1

at

livingroom1floor1

at

broomcloset1floor1

at

bedroom1floor1

at

table1

at

sidetable1

at

counter1

at

refrigerator1

at

cupboard1

at

wardrobe1

at

shelf1

at

freezer1

at

chair1

atbed1

at

couch1

at

pottedplant1

at

on

broom1

at

on

mop1

at

on

sandwich1

at

in

apple1

at

in

banana1

at

in

orange1

at

in

peach1

at

in

plate1

at on

on

book1

at

on on

pillow1

at

onon

player1

at

Figure 13: Graph representation of an ’easy’ instance.

kitchen1

pantry1 hallway1 livingroom1

broomcloset1 bedroom1

kitchen1floor1

at

pantry1floor1

at

hallway1floor1

at

livingroom1floor1

at

broomcloset1floor1

at

bedroom1floor1

at

table1

at sidetable1

at

counter1

at

refrigerator1

at

cupboard1

at wardrobe1

atshelf1

at

freezer1

at

chair1

at

bed1

at

couch1

at

pottedplant1

at

on

broom1

at

on

mop1

at

on

sandwich1

at

in

apple1

at

in

banana1

at

in

orange1

at

in

peach1

at

in

plate1

at

onin

book1

at

on on

pillow1

at

on in

player1

at

Figure 14: Graph representation of a ’hard’ instance.

	Introduction
	Related Work
	AdventureGame: IF Environment
	Task Definition
	Interaction
	Challenges & Examined Capabilities

	Experimental Setup
	Game Instances
	Metrics
	Evaluated Models

	Results
	Overall Comparison
	In-depth Analysis
	Difficulty Levels
	Action Planning
	Successful, Lose & Aborted Episodes
	Exploration

	Qualitative Analysis
	Navigation
	Planning & Self-correction
	Exploration
	Hallucination

	Discussion
	Conclusion
	Result details
	Actions
	Initial Prompts
	Environment Graphs

