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Beyond speech: leveraging
mouse movements for
iInformation adaptation in voice
Interfaces

Dimosthenis Kontogiorgos'* and David Schlangen?

!Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, United States, 2Department of Linguistics, University of Potsdam, Potsdam, Germany

As human speakers naturally adapt their linguistic styles to one another, voice
user interfaces that prompt similar linguistic adaptations can augment human-
like interaction. In this study, we leverage a corpus of human instructions to
model the effectiveness of incremental instruction generation in artificial agents.
Participants interacted with agents that guided them in selecting virtual puzzle
pieces, varying the amount of information provided in each instruction. Through
an empirical examination of the Gricean maxims in utterance construction,
our initial perception study highlighted the significance of adaptive instruction
generation. By employing mouse movements as a proxy for user understanding,
we developed computational models that enabled agents to detect user
uncertainty and refine instructions incrementally. Comparing speaker-based and
listener-based models, we found that agents encouraging linguistic adaptations
were preferred by users. Our findings offer new insights into the value of
mouse movements as indicators of user comprehension and introduce a
methodological framework for developing adaptive interactive systems that
generate instructions dynamically.

KEYWORDS

instructions, language production, mouse tracking, common ground, adaptive systems,
incremental instruction, voice user interfaces, conversational agents

1 Introduction

“Pass me the Vernier, please,” said Jakob. “The what?” asked Frida. “The calliper”, Jakob
replied, observing Fridas confusion. “The long metal thing... right in front of you”, continued
Jakob. Although this dialogue is only represented in text, it illustrates the richness of an
interactional setting and how embodied actions can prompt the reformulation of speech.
In task-oriented interactions, speakers collaboratively build common ground—a mutual
understanding of shared goals (Clark and Marshall, 1981; Clark and Wilkes-Gibbs, 1986;
Fussell and Krauss, 1992; Dafoe et al., 2021). Utterances are constructed in a cooperative
manner (Clark, 1996), following a principle known as audience design (Bell, 1984; Brennan
and Hanna, 2009).

1.1 Grice's cooperative principle
This process is part of the cooperative principle that Grice defined as the maxim

of quantity (Grice, 1975, 1989), which represents efficiency in communication by
conveying the most accurate information with the least effort required. Speakers minimize
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collaborative effort by always seeking positive evidence of
understanding, a concept known as the grounding process (Clark
and Brennan, 1991; Brennan and Clark, 1996). They construct
utterances in an opportunistic approach, incrementally gathering
evidence that the criteria for mutual understanding are met (Sacks
et al., 1978; Schober and Clark, 1989; Gonsior et al., 2010). Difficult
descriptions are often conveyed through episodic utterances or
incremental units, where the communicative act itself, rather
than the information conveyed, holds the most significance
(Krahmer and Van Deemter, 2012). This type of adaptation poses
a challenge for interfaces, as it requires them to have robust
representations of the interaction state and effectively interpret the
user’s signals.

1.2 Approach

In this paper, we examine these interactional phenomena
by replicating incremental utterance construction in voice user
interfaces. We begin with the assumption that there is an alignment
between the complexity of instructions and the level of assistance
required from the system. Some users may rely less on system cues
and are more likely to achieve their goals with systems that adapt to
their individual needs (Torrey et al., 2006). While low system effort
may lead to misunderstandings, excessive effort could overwhelm
the listener (Torrey et al., 2013; Chai et al., 2014; Kontogiorgos and
Gustafson, 2021).

We examine this adaptation process from the perspective of
common ground. Our approach begins by analyzing a corpus in
which humans instruct each other in a task-oriented setting. The
annotated instructions were synthesized through a Text-To-Speech
(TTS) system and evaluated in the first study to explore the balance
of information necessary for task completion. Participants’ mouse
movements were collected, analyzed, and used as a proxy for
utterance comprehension. In a second study, employing Machine-
Learning methods, the system automatically assessed participants’
understanding based on their mouse movements. This adaptive
instruction generation method enabled the system to predict in
real-time whether users would successfully complete the task and
to adjust the construction of instructions incrementally.

1.3 Research questions

The corpus analysis and two studies address the following
research questions:

RQ1: How do human
incremental units, and what are their attributes (e.g.,

speakers produce instructions in
timing, duration)?

RQ2: What is the optimal granularity of information that an

interface should provide at each incremental unit of a goal-

oriented task? Specifically, how does varying the amount

and detail of information affect task performance and user

understanding?
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RQ3: How can the interface dynamically adapt its communication
strategy when the user’s attention or behavior deviates from
the expected interaction pattern?

1.4 Contributions of this article

Our findings indicate that voice user interfaces that utilize
incremental instructions can effectively minimize collaborative
effort with users. We demonstrate that mouse movements serve
as a reliable proxy for utterance comprehension and influence
instruction behavior in incremental units. The goal of this paper is
to estimate how well this coordination is maintained by predicting,
throughout the interaction, whether the user’s goal is uncertain
(Kontogiorgos et al., 2019). We design a system that adapts to
the user’s information needs in a virtual puzzle task by providing
referential information incrementally (Engonopoulos et al., 2013;
Zarrief3 and Schlangen, 2016) (Figure 1).

This line of work contributes to empirical findings in
linguistic alignment research (Branigan et al., 2010). Specifically,
we demonstrate how an interface can exhibit adaptive and
collaborative behavior by providing as much information as needed
by users. We evaluate three approaches to eliciting adaptive
behavior by comparing two interaction strategies: (a) a speaker-
based model and (b) a listener-based model, against (c) a control
condition where users explicitly request the information they need.
Differences are assessed in terms of users task performance, user
behavior, and perceptions of the three agents, providing valuable
insights for designing future voice user interfaces that deliver
personalized instructions.

1.5 Background and related work

1.5.1 Mutual understanding with voice user
interfaces

Incremental language construction behaviors demonstrate the
affordances of interaction, showing that mutual understanding
can be shaped as a continuous, participatory, and collaborative
process (Clark, 1996; Clark and Krych, 2004; Baumann et al,
2013). Like human speakers, voice user interfaces should
employ data-driven approaches and adapt their instruction
strategies to match users evolving levels of understanding
(Pelikan and Broth, 2016; Kontogiorgos and Pelikan, 2020;
Behnke et al., 2020). While much of the HCI research has
concentrated on preventing miscommunication with users, it
often overlooks that human dialogue is grounded in the
cooperative principle (Grice, 1989), characterized by variability in
interactional phenomena (e.g., disfluencies, repairs, hesitations)
(Kousidis et al., 2014; Buschmeier et al., 2012; Wagner et al.,
2015; Haake et al, 2019). Given the inherently social nature
of human communication, user interfaces must incrementally
monitor users for social cues that signal mutual understanding
(Kontogiorgos, 2022), a human-like capability that voice user
interfaces currently lack.
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mouse features

FIGURE 1

Research design of this study: (1) Extraction of instructions from a dataset of
the extracted instructions, followed by evaluation in an online study (Study 1
instruction models, with subsequent evaluation of these models in a percept
training. (c) Study 2: human evaluation.
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human instructors (ZarrieR et al., 2016). (2) Modeling and synthesizing
). (3) Utilizing mouse movement data from Study 1 to train adaptive
ion study (Study 2). (@) Human instructors dataset. (b) Study 1: ML model

1.5.2 Adaptation in cooperative Al

In this paper, we focus on computer adaptation, which is
further demonstrated in the two studies presented. We examine
adaptation within the domain of referential language,* particularly
in the instructional use of language that describes objects within
the shared space of attention between the user and the computer
(Axelsson and Skantze, 2020). The user’s visual attention is
considered in the form of mouse movements to guide subsequent
instructions.?

A significant body of research on referring expression (RE)
generation in HCI has focused on producing REs as the shortest
possible expressions with minimal ambiguity (Dale and Reiter,
1995; Williams and Scheutz, 2017). However, this approach does
not fully align with how humans naturally communicate. Humans
depend on the cooperation of their conversational partner to
resolve ambiguities, constructing descriptions in an opportunistic
manner that often results in non-optimal, yet adequate, utterances.
These utterances can be repaired and adjusted according to the
listener’s understanding. This process is inherently collaborative,
particularly in interactive settings, where the RE is tailored to
the specific listener, and a sequence of utterances is iteratively
refined until mutual comprehension is achieved. The objective of
this process is to minimize the joint effort, thereby producing REs with
the least collaborative effort (Clark and Wilkes-Gibbs, 1986; Clark
and Brennan, 1991).

Some HCI research has investigated incremental descriptions
or ambiguous instructions across various contexts, including
computational studies on situated dialogue among humans
(Kelleher and Kruijff, 2006; Dethlefs et al., 2011; Kirk and
Fraser, 2017; Magassouba et al., 2018), and visual search (Kraut
et al, 2003; Zarrief and Schlangen, 2016; Li et al, 2020;
Rojowiec et al, 2020). This work often involves incremental
units (Skantze and Hjalmarsson, 2010; Baumann and Schlangen,
2012; Kennington and Schlangen, 2017; Jensen et al, 2020)
or leverages the incremental algorithm (DeVault et al, 2005).

1 Referring expressions (REs) are utterances that often involve language
identifying entities in the physical space (e.g., “this one here”) or abstract
entities (e.g., “Grace Hopper was here”) (Isaacs and Clark, 1987).

2 For an overview of visual search and attention, see the work of (Muller
and Krummenacher, 2006) and (Eckstein, 2011).
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Researchers have also incorporated signals like users’ eye-
gaze (Koller et al, 2012; Staudte et al, 2012; Mitev et al,
2018) and employed paradigms in virtual environments (Stoia
et al., 2006; Striegnitz et al., 2012; Garoufi and Koller, 2014).
Additionally, instructions have been examined within Human-
Robot Interaction (HRI) through human-robot collaborative
instruction tasks (Fang et al., 2015; Wallbridge et al., 2019; Dogan
et al, 2020; Weerakoon et al., 2020; Wallbridge et al.,, 2021;
Dogan and Leite, 2021) and in robotic navigation (Tellex et al,
2011).

What information interfaces disclose in each incremental
unit or which instructional strategies may be most effective has
been sparsely explored, primarily within HRI research (Torrey
et al, 2006, 2007, 2013; Saupp and Mutlu, 2014; Sauppé and
Mutlu, 2015). Collaborative human-AI utterance generation has
also been approached through abstraction matching, generating
grounded utterances that align with user intent in Python code
generation (Liu et al, 2023). Providing explanations as repair
strategies has been demonstrated to be effective in conversational
interactions (Ashktorab et al., 2019). While this article focuses on
the social dynamics of generating utterances incrementally, some
research has raised questions about building relationships and
bonds in conversational agent communication, favoring a focus
on transactional and utilitarian aspects without directly mimicking
human-to-human conversation (Clark et al., 2019).

1.5.3 Adaptation in the form of incremental units

Instructions in situated interactions are often composed of
multiple fragmentary utterance units, described as a series of
corrections (Lindwall and Ekstrom, 2012). These instructions
depend on mutual understanding, from their initial formulation to
the iterative process of being reformulated based on the actions of
the person receiving the instruction. This adaptation process poses
a significant challenge for computers, as they must continuously
monitor the user and adjust instructions in real-time. Thus,
the generation of instructions should not be viewed solely as
information exchange,® but also as an opportunity to demonstrate
socially intelligent behavior.

3 For an overview of the concept of information structure and utterances

as informational units, see (Halliday, 1967).
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Such behavior is likely influenced by the speaker’s ability to
adhere to the cooperative principle and the Gricean maxim of
quantity, providing as much information as necessary with as few
utterances as possible (Gigliobianco et al., 2024). This approach
is also likely intended to minimize collaborative effort (Fang
et al., 2015; Kontogiorgos and Gustafson, 2021), with difficult
instructions being presented incrementally until common ground
is established. One reason for this behavior could be that it is
easier for speakers to plan utterances incrementally rather than
constructing a single, unambiguous instruction; another reason is
the flexibility it provides in adapting to the listener’s understanding.
This joint orientation of incremental turns is often facilitated
through pausing and forming intonational phrases, allowing the
speaker to adapt and reformulate instructions as multi-utterance
contributions to the conversation (Clark and Wilkes-Gibbs, 1986),
in synchrony with the listener’s signals of understanding—a
challenging task for voice user interfaces.

2 Modeling instructions

2.1 Human instructor corpus

We used a corpus of human instructors from (Zarrief3 et al.,
2016). The corpus consists of 11 dialogue pairs of native English
speakers interacting through video. Their task was to solve a virtual
pentomino puzzle, forming shapes such as the elephant shown
in Figure 2. The role of the “Instructor” was to guide the “User”
participant on how to solve the puzzle.

2.2 Instructions in incremental units

The corpus included utterance-level annotations, increment
transcripts, and the types of referring strategies used to identify the
pentomino pieces (Schlangen and Ferndndez, 2008). A transcript of
a fragment of an interaction is shown below, with the incremental
units highlighted in bold:

INSTRUCTOR: letter There’s a piece like an L shape.
USER: Mhm, yeah!

INSTRUCTOR: geometrical shape Where you know one piece
is longer than the other.

INSTRUCTOR: blocks It’s about four units by two units.
USER: This one?

USER: So, you, you can see it when 'm moving it here?
INSTRUCTOR: No. I, T just see the solution, yeah?
INSTRUCTOR: I'm looking at an elephant, believe it or not.
INSTRUCTOR: Okay, so eh.

USER: -laughter-

INSTRUCTOR: elephant solution It’s like the back leg.
INSTRUCTOR: location The bottom right of the ... grid.

An important aspect of using human instruction utterances is
that they are generated in a collaborative manner. We used the
incremental units as templates to generate computer instructions.
Instructors typically altered the referring strategy [type of referent
attribute (Reigeluth et al., 1980)] with each new increment. We
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extracted and modeled the incremental units from a total of 3,174
referring expressions.

2.3 Automatic instruction generation

We analyzed the instructions by examining their turn-taking
characteristics. The average number of incremental units per
instruction was 2.0 & 1.5, with a minimum of 1 and a maximum
of 5 incremental units. The average incremental unit duration was
2.4s £ 1.6s, with an average of 6.6 = 6.3 words per unit and
a pause duration of 1.4s + 2.2s between units. To utilize these
utterances in the studies, we filtered the data by selecting the five
most frequently used strategies (corresponding to the maximum
number of incremental in this corpus). We also removed outliers
from the data (e.g., very long pauses, very long utterances) by
filtering data points more than two standard deviations away from
the mean, resulting in a total of 1,588 utterances.

We then cleaned the utterances for disfluencies or prosodic
information included in the annotations. A random set of
utterances was selected and checked for coherence. Next, we
grouped the utterances and filtered out the referent object to use
as templates. Aside from the referent-specific information, the
remaining utterance attributes, including the syntactic structure,
were preserved as originally spoken by the instructors. The agent
only needed to select a human utterance and adjust it to the current
referent target.

3 Study 1: The maxim of quantity

We conducted a study with an interface instructing humans to
evaluate the effectiveness of the incremental units observed in the
corpus. Participants were exposed to two types of stimuli: (i) visual
(the pentomino pieces), and (ii) auditory (task instructions).

3.1 Materials and methods

3.1.1 Implementation

We implemented a web version of the Pentomino task, where
each scene included the referent target object among a set of
distractor objects. Instructions were generated for each Pentomino
and referring strategy using Amazon Polly Text-to-Speech (TTS),
and we created the agent Matthew. All participants were exposed
to the same stimuli. Task boards were generated with Pentomino
pieces randomly positioned (see Figure 3). Matthew delivered an
incremental unit for each of the five referring strategies observed in
the human corpus (transcript in Section 2.2).

Although current oft-the-shelf TTS services provide limited
control over prosodic variation (Székely et al, 2019), we
manipulated the end of each incremental unit by introducing a
rising pitch to suggest that the agent might continue with an
additional utterance (Traum and Hinkelman, 1992; Brennan and
Schober, 2001). After each unit, the agent paused. To determine
the duration of these pauses (Zellner, 1994), we used the timing
data (mean and standard deviation) from the human instructor
corpus to decide how long to wait before delivering the next
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Instructor

FIGURE 2
The collaborative task in the corpus (ZarrieR et al., 2016).

Okay so next one is the one It is like .. 3 by 3 blocks?

that looks like the letter V.

Looks a bit like an arrow. Yeah, right there on the

! P o
Eﬁj\ Eﬁ:\

dp & 8

4
T

L

Fp b 0

iy J 4y &
S %&@@
Tir I

e 8 |

FIGURE 3

Illustration of a voice user interface incrementally constructing instructions based on the user's signals.

incremental unit. While most of the pauses were silent, in some
instances, Matthew generated filled pauses (e.g., “whm,” “uh”),
based on their occurrence rate in the human corpus (22% of
the pauses). The interface monitored participants’ visual attention
(Miller and Krummenacher, 2006; Eckstein, 2011) through their
mouse movements.

3.1.2 Independent variables
In this study, we investigated the amount of information
that needs to be conveyed in instructions. We hypothesized

Frontiersin Computer Science

that even when subjects are exposed to the same amount of
information, some individuals might be more dependent on
the adaptation to their specific information needs. The aim
was to estimate the minimal amount of information required
to achieve high accuracy and to determine whether additional
information is always beneficial or potentially detrimental.
We expected to observe a trade-off between the spoken
effort exerted by the interface and the users’ accuracy in the
task.

We manipulated the amount of information provided to
subjects by using the minimum (1) and maximum (5) number of
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incremental units employed by human instructors and tested five
variations of instructions. To control for order effects, we also tested
each of the five referring strategies appearing first, resulting in a
combination of 25 (5 incremental units x 5 referring strategies)
instructions for each of the Pentominoes. In total, 300 instructions
were evaluated (25 x 12 Pentominoes) using a balanced Latin
Square design.

3.1.3 Dependent variables
3.1.3.1 Behavioral measures

User actions: We measured users’ overall accuracy in the task
(percentage of correctly identified objects). For each instruction,
we also recorded users' response time, indicating the effort
spent on visual search, as well as idle time, which represents
the time taken by users to initiate a mouse movement, and
whether the user’s mouse had moved as a binary feature. Mouse
uncertainty: For each incremental unit, we also calculated a set
of features representing the user’s mouse movement uncertainty
(see Table 1). These features allowed us to estimate the degree
of unpredictability in the mouse movements as a proxy for the
user’s attention (Fitts, 1954) (see Figure 4). The continuous signal
of mouse movements was extracted every 200ms and concatenated
to represent the mouse movement during the incremental unit,
while also preserving the temporal dynamics; moving away from
or toward the target piece can be interpreted as a user’s display of
understanding. Mouse movements have been utilized in cognitive
psychology (Wachsmuth et al., 2008; Tomlinson Jr and Bott, 2013;
Tomlinson Jr and Assimakopoulos, 2013; Xiao and Yamauchi, 2014;
Calcagni et al., 2017; Rheem et al.,, 2018; Horwitz et al.,, 2020;
Schoemann et al., 2021) to assess cognitive load, as well as in
HCI (Whisenand and Emurian, 1999; Mueller and Lockerd, 2001;
Ashdown et al., 2005; Arroyo et al., 2006; Guo and Agichtein,
2010; Diaz et al., 2013; Monaro et al., 2017; Kieslich et al., 2019;
Krassanakis and Kesidis, 2020) and information retrieval (Guo and
Agichtein, 2008; Huang et al., 2011, 2012b; Briickner et al., 2021)
to identify user attention and engagement (Johnson et al., 2012;
Smucker et al., 2014; Arapakis and Leiva, 2016, 2020; Arapakis et al.,
20205 Kirsh, 2020), often showing a correlation with eye movements
(Chen et al., 2001; Huang et al., 2012a; Qvarfordt, 2017).

3.1.3.2 Subjective measures
Users were asked to respond to four 7-point Likert-scale
questions (see Table 1) regarding the Instruction Appropriateness.

3.1.4 Statistical analyses

We conducted statistical analyses in R (Team, 2009). Using the
Imed4, ImerTest, glmmTMB packages (Bates et al., 2014), we fitted
linear mixed-effects models (LMM:s) and generalized linear mixed-
effects models (GLMMs) to examine the relationship between
the number of incremental units uttered (fixed factor with five
levels), instruction correctness (fixed factor with two levels), and the
dependent variables. As random effects, we included intercepts for
the participants, the pentomino pieces, the referring strategies, and
the type of mouse device used. Continuous dependent variables were
analyzed with LMMs after log transformation, where appropriate.
Binary outcomes were analyzed with GLMMs using a binomial
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TABLE 1 Behavioral and subjective measures.

Behavioral: user actions

Accuracy Percentage of correct pieces selected

Response time Time it took subjects to select a piece

Idle time Time it took subjects to initiate a mouse
movement
Mouse Moved Binary feature indicating the mouse has moved

Behavioral: mouse features

Distance to target
(mean)

Average linear distance to target piece

Distance to target (std) Standard deviation of distance to target piece

Distance to target (min) Minimum distance to target piece

Distance to target (max) Maximum distance to target piece

Distance to target
(range)

Range of distance to target piece

Distance to target (slope) | Slope of distance to target piece

Distance traveled Total mouse distance traveled

Velocity (mean) Velocity of mouse movement

Direction change X Number of changes in trajectory direction

(X-axis)

Direction change Y Number of changes in trajectory direction

(Y-axis)

Area under the curve
(AUC)

AUC from observed mouse trajectory to direct
path to target piece

Mean absolute deviation Mean absolute deviation to direct path to target

piece

Max absolute deviation Max absolute deviation to direct path to target

piece

Subjective measures

Ambiguousness Matthew’s instruction was [unambiguous /

ambiguous)

Human-likeness Matthew’s instruction was [machine-like /

human-like]

Information Matthew’s instruction had [too little / too much]
information

Effort Matthew put [too little / too much] effort in this

instruction

link. We opted for LMMs due to their ability to model variance
in the data, such as the variability in mouse behavior across
users, using the following notation: DV ~ IncrementalUnits *
InstructionCorrectness + (1|Participant) + (1|PentominoOrder) +
(1|ReferringStrategy) + (1|MouseType). Model assumptions were
validated using the DHARMa package, and effect sizes were
reported as standardized B (LMMs) or odds ratios (GLMMs)
with 95% confidence intervals. Participants were not restricted
on when they could select pieces. For a small subset of the
data (11%), participants selected a pentomino before hearing the
complete instruction; therefore, we included interruption as a
confounding factor to account for this variance in the model.
Maximum likelihood estimation tests were used to determine
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FIGURE 4
Area under the curve (AUC) of the observed mouse trajectory
compared to the direct path toward the referent.

the chi-square and p-values, comparing the null models to the
full models.

3.1.5 Procedure and data collection

At the beginning of the task, Matthew asked participants for
their informed consent. After each instruction, Matthew indicated
whether the instruction was correct and placed the piece on the
elephant structure accordingly. At the end of the interaction,
Matthew asked participants to provide their demographic data.
Participants were debriefed on the study’s purpose and the
experimental manipulations.

Eighty participants were recruited online (Eerola et al., 2021).
Five participants did not fully complete the task or experienced
technical issues and were excluded, resulting in a total of 75
participants. The participants evaluated a total of 900 instructions,
with 2,700 incremental units used as data points in the statistical
and machine-learning models. The mean age of the participants
was 31.8 (£6.9) years, with 30 identifying as female and 45 as male.
Their self-reported English fluency was 6.3 (0.9) on a scale of 1
to 7. The task took, on average, 18.0 (£8.2) minutes to complete,
and each instruction lasted, on average, 11.8 (£5.2) seconds. Forty-
four participants used a mouse, while 31 participants used a
trackpad.

3.1.6 Manipulation check

Since the stimuli used were synthesized human instructions,
we had limited control over the amount of information conveyed
in each incremental unit. We used the number of words
spoken as a proxy for the information transmitted to determine

whether the stimulus was consistent across incremental units.
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Fitting linear mixed-effects models indicated that there were
no significant differences in the number of words spoken per
incremental unit (6.9 £ 3.5): X2 = 142, p > 0.05
with a marginal R*> of 0.001, suggesting that each incremental
unit carried approximately the same amount of information
(as indicated by the number of words). To further assess
the informational similarity between utterances, we computed
the average pairwise semantic similarity using Sentence-BERT
embeddings (all-MiniLM-L6-v2) and cosine similarity, which
yielded a mean value of 0.29, indicating that the utterances
were moderately similar in meaning; not identical, yet sharing
some overlap in informational content across incremental units.
However, it remains subjective as to what information is considered
ambiguous in this paradigm, which we aim to evaluate in this
study.

3.2 Results

3.2.1 Behavioral measures

Effects of user actions: Accuracy. On average, participants had
an accuracy of 70.8%, with 8.5 (:1.4) out of 12 referents correctly
identified. Fitting generalized linear mixed models revealed a
statistically significant difference in the number of correct pieces
identified per incremental unit (see Figure 5), with the mean values
presented in Table 2, indicating that more information presented
led to better performance, however without a clear indication
of additional information being perceived as overwhelming. We
also tested the effect of referring strategies order, which showed
a statistically significant impact: x* = 27.87, p < 0.001. Idle &
response time. The mean idle time was 9.09 (+10.2) seconds, and
the mean response time was 14.7 (+11.4) seconds. LMMs (with
log transformation) indicated that both idle and response times
were statistically different across incremental units, with a rising
trend in time (see Table 2 and Figure 6). The models also showed
that users were faster at selecting pieces when they selected the
correct piece. Through GLMMs, the Mouse moved measure was
found to be statistically different across incremental units, with
users mouse movements starting early during the instruction (see
Table 2).

Effects of mouse uncertainty. Linear mixed-effects models
revealed statistically significant differences in how participants
utilized mouse movements and how uncertainty was expressed
when selecting pieces during each incremental unit (see
Table 2 and Figure 6). Consistent with users’ accuracy in the
task, mouse movements indicated that less uncertainty was
associated with a higher number of incremental units spoken by
the interface.

3.2.2 Subjective measures

Fitting linear mixed-effects models on Instruction
Appropriateness revealed statistically significant effects on
how incremental units were perceived (see Table 2). The findings
indicated that there were differences in how the amount of
information and ambiguity were perceived, with selection

accuracy influencing whether or not participants believed
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FIGURE 5
Users’ accuracy in identifying the correct pentomino pieces per incremental unit. Based on the number of incremental units spoken, the interface
can estimate the probability of the user correctly identifying the referent.

TABLE 2 Behavioral and subjective measures for each incremental unit, with unit means (1-5) comparing the null model to the full model.

Predictor 11 12 13 14 15 R? Chi-square p-value
Accuracy (%) 0.57 0.69 0.73 0.79 0.75 0.029 21.209 o
Idle Time 8.38 8.59 9.70 8.97 10.33 0.035 35.083 o
Response Time 12.6 13.1 15.1 15.7 17.3 0.291 23271 o
Moved (%) 0.99 0.61 0.55 0.60 0.60 0.861 215.39 e
Distance (mean) 852 898 852 799 784 0.009 23.291 o
Distance (std) 386 203 159 119 112 0.112 280.87 o
Distance (min) 126 551 622 618 621 0.056 142.65 o
Distance (max) 1,163 1,086 1,027 930 912 0.033 87.929 o
Distance (range) 1030 539 407 314 290 0.133 339.02 e
Distance (slope) -24.8 -16.8 -15.2 -14.3 -12.2 0.016 31.331 ok
Distance traveled 1430 723 531 399 370 0.142 364.27 o
Velocity 329 23.1 21.0 18.4 17.5 0.017 36.204 o
Dir. change (x) 2.655 1.328 1.045 0.899 0.865 0.070 167.97 o
Dir. change (y) 2915 1.473 1.177 0.981 0.974 0.081 195.15 o
AUC 33,415 228,324 259,276 254,554 257,854 0.050 136.72 e
Mean abs. deviation 86.8 95.5 90.1 90.7 90.5 0.067 146.35 o
Max abs. deviation 139 143 128 122 121 0.055 108.89 o
Ambiguousness 4.74 4.15 4.03 3.71 3.90 0.255 192.48 o
Human-likeness 4.08 4.23 4.32 4.40 4.09 0.047 36.224 o
Information 2.52 3.17 3.57 3.95 4.15 0.330 330.16 o
Effort 2.60 3.37 3.69 3.99 4.13 0.329 287.27 o

P-value indicators: —p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.

additional information was necessary. Perceived information 3.3 Estimating user uncertainty
amount was strongly affected by whether a user made a

correct selection (see Figure 6); however, the actual amount To estimate whether each instruction was ambiguous, we
of information provided remained constant, regardless of the trained two Random Forest (RF) classifiers using the Scikit-
user’s performance. Learn framework (Pedregosa et al., 2011). We selected RFs for
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FIGURE 6
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their robustness against overfitting and their interpretability in
identifying the most informative features. Using mouse features,
we were able to estimate user uncertainty and predict whether
users were likely to succeed. The first model was a speaker-based
model, where the system Tooks back’ at what it has said and predicts
whether the reference will be successful. We employed Sentence-
BERT (Reimers and Gurevych, 2019) to convert each instruction
into a 384-dimensional vector. The second model was a listener-
based model that incorporated both the instruction embeddings
and the user’s mouse movements (see Table 1). Both models utilized
these features to estimate the user’s confidence in their selection;
an adaptive interface with this knowledge can incrementally
determine whether the user requires additional information.

To better understand the models, we calculated the most
informative features in the classification task. Both classifiers were
evaluated using subject-independent 10-fold cross-validation. For
each incremental unit, we utilized the users’ piece selections as
ground truth in the models. The underlying assumption is that
either the user’s attention or the adequacy of the incremental unit
contains information that leads to correct actions, which a machine
learning model can leverage.

A total of 900 instructions were used. The models extracted
features within the sampling window between incremental units.
Since the classification classes were imbalanced, we applied the
Scikit-Learn resampling method (Pedregosa et al., 2011) to re-
sample the majority-class segments, balancing the dataset. This
process resulted in 1,266 data points, with an average sampling
window of 5.6 (£7.5) seconds (between turns) and a total duration
of about 2 h of mouse-movement data. For evaluation metrics, we
report the average Accuracy of the models, as well as Precision,
Recall, and F1 scores.

3.3.1 Speaker-based model

Using the semantic representations, the speaker-based
model simulated a human speaker self-repairing their utterance
(Kontogiorgos et al., 2019), essentially evaluating whether it was a
good instruction based on its linguistic features. Hyperparameters
for the Random Forest model were optimized using grid search:
[max-depth = 110, max-features = “auto,” min-samples-leaf =
100]. The results,

4, min-samples-split = 10, n-estimators =
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presented in Table 3, show better-than-chance accuracy, although
relatively low.

3.3.2 Listener-based model

The hyperparameters for the listener-based model were
optimized using grid search: [max-depth = 100, max-features =
“auto,” min-samples-leaf = 3, min-samples-split = 12, n-estimators
= 100]. This model yielded better results (see Table 3), indicating
that paying attention to the listener may better simulate human
speaker behavior. A post-hoc examination of the model’s features
revealed that the mouse features combined had an F-score of 0.67,
compared to 0.33 for the linguistic features.

3.4 Discussion

The focus of this study was to investigate the maxim of quantity
(Grice, 1975), specifically the amount of relevant information
presented to participants to successfully disambiguate referring
expressions. The findings indicated that information adaptation is
crucial, as users require utterances adapted to their information
needs. The fact that users rated the information received differently
is a significant insight for information adaptation, suggesting that
they assess the amount of perceived information based on their task
performance rather than the actual information received.

While we initially expected that providing more information
might overwhelm users, the results did not clearly support
that assumption, as users accuracy did not consistently reflect
this effect. We also observed differences in idle and response
times; participants with higher accuracy responded more quickly,
indicating that slower response times were associated with higher
cognitive effort.

We also observed statistically significant differences in how
participants rated the interface. We had predicted that users would
not always achieve high accuracy, as the instructions provided
were sometimes incomplete. However, focusing solely on accuracy
could lead to designing an agent that continuously provides
information until all ambiguity is resolved, regardless of how
overwhelming this might be for users. This highlights a challenge
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TABLE 3 Summary of the performance of the machine learning models.

10.3389/fcomp.2025.1634228

Model Features Accuracy Precision Recall F1

Baseline [random chance] 0.5 0.5 0.5 0.5

Speaker-based BERT x384 0.61 (£0.05) 0.60 (£0.05) 0.66 (+0.05) 0.63 (£0.05)

Listener-based BERT x384 & Mouse 0.87 (40.04) 0.81 (£0.05) 0.96 (+0.03) 0.88 (+0.03)
Movements

Highest performance indicated in bold.

that socially intelligent agents must address: maximizing accuracy
while minimizing collaborative effort (investigated in Study 2).

Finally, the two prediction models estimated user uncertainty,
demonstrating strong performance in identifying which types of
features (linguistic vs. behavioral) an interface should focus on
to deliver incremental units where turn transitions are “relevant”
(Sacks et al., 1978).

4 Study 2: The principle of least
collaborative effort

Study 2 investigated how to elicit adaptive behavior
through instructions using the models trained in Study 1. A
significant difference between the two Studies was that Study 2
examined adaptive instruction strategies, while Study 1 utilized
predetermined structures of instructions evaluated by users.

4.1 Materials and methods

4.1.1 System design

We utilized the same web application, modified to incorporate
the ML models. We took a new sample of the human instructions
and synthesized them using the same TTS method described in
Study 1. We created three agents (Kevin, David, and Peter), each
corresponding to a variation of the three models evaluated. Each
agent began with a single incremental unit and then monitored the
user to determine whether additional information was necessary.
The order of referring strategies was based on their frequency of
usage in the human corpus. We deployed the machine-learning
models on the interface using the Sklearn-Porter open-source
framework (Morawiec, 2021).

4.1.2 Independent variables

We evaluated three separate models for planning spoken
instructions. We hypothesized that a model that monitors the
user would have an advantage over a model that only monitors
what is being spoken. We compared these two models to a
control condition in which users actively indicated whether a new
instruction unit should be spoken (Tell-Me-More). A total of 60
CUI instruction units (same for each condition) were evaluated (5
incremental units x 12 Pentominoes). This study aimed to examine
the optimal model for providing instructions, investigating whether
adaptive models that follow the principles of least collaborative
effort offer a benefit in the interaction.
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4.1.2.1 Adaptive baseline (Tell-Me-More)

This interface only responded to the need for additional
information when manually prompted by the user. Using the
same pausing behavior, the interface displayed a Tell-Me-More
button at the end of the pause, waiting for the user to indicate
if a new instruction unit should be spoken. Pressing the button
can be seen as the user’s continuous attempt to establish common
ground (Garoufi et al., 2016). Users received a higher payment for
correct answers across all conditions; however, in this baseline,
they were informed that each press of the button would reduce
their bonus payment. Through this process, users aimed to achieve
as many correct answers as possible with the minimal amount of
information required.

4.1.2.2 Speaker-based model

We extracted and employed the speaker-based model from
Study 1. As long as the model predicted that the participant
was unlikely to be successful, it would respond with phrases
like “no”, “not this one”, or “hm” before proceeding to the next
instruction unit (Rookhuiszen et al., 2009; Mitev et al., 2018).
When the model predicted that the user would be successful,
it would respond with “yeah”, “yes”, or “yup”, followed by
the next instruction unit. We anticipated that the low accuracy
of this model would induce additional uncertainty in user behavior.

4.1.2.3 Listener-based model

This model not only evaluated its own utterances as the
speaker-based model but also monitored users’ mouse movements
using the same features as in Study 1 as input. It utilized the
same feedback behavior as the speaker-based model based on its
predictions. As this model was adaptive to the user, we predicted
that it would result in less uncertainty in user actions, as indicated
by mouse movement behavior.

4.1.3 Dependent variables
4.1.3.1 Behavioral measures

For each model, we measured user actions and mouse features
as outlined in Table I. We also compared system behavior,
including the number of incremental units uttered per model, as
well as model predictions in relation to the number of times the
Tell-Me-More button was pressed by users.

4.1.3.2 Subjective measures
Users rated each instruction for appropriateness using two
questions from Table 1: Ambiguousness and Information. System
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TABLE 4 Behavioral and subjective measures for each condition (c1: speaker-based model, c2: listener-based model, c3: adaptive baseline).

Predictor C1 (o C3 R? Chi-square p-value
Incremental units 2.8 3.0 1.2 0.444 89.09 o
Accuracy (%) 0.631 0.655 0.663 0.002 0.51 -
Idle time 5.79 5.77 10.81 0.026 17.353 o
Response time 133 11.2 13.8 0.040 34.986 o
Moved (%) 0.45 0.45 0.34 0.049 25.324 o
Distance (mean) 835 876 999 0.031 21.293 ek
Distance (std) 106 59 158 0.054 36.494 o
Distance (min) 686 781 752 0.025 23.832 e
Distance (max) 950 937 1137 0.034 15.513 .
Distance (range) 263 155 385 0.052 34.376 ok
Distance (slope) -13.8 -5.16 -25.3 0.039 30.654 ok
Distance traveled 279 228 457 0.045 33.265 o
Velocity 17.7 9.9 30.4 0.053 31.681 o
Dir. change (x) 0.635 -0.337 0.705 0.150 88.371 o
Dir. change (y) 0.681 -0.320 0.875 0.157 81.378 o
AUC 297,209 -8,227 341,591 0.341 104.34 o
Mean abs. deviation 91.7 39.2 85.2 0.088 33.367 o
Max abs. deviation 119 44 132 0.191 55.846 o
Ambiguousness 3.69 3.77 3.90 0.010 4.49 -
Information 3.83 3.92 3.24 0.199 97.90 o

P-value indicators: —p > 0.05, *p = 0.05, **p = 0.01, **p = 0.001.

perception: At the end of the interaction, users evaluated the
agent, focusing on Instruction Comprehension and whether the
instructions were perceived as Understood, Complete, Helpful, and
Collaborative. We also measured the Agent Rating using two items
from the Godspeed questionnaire (Bartneck et al., 2008) related to
Likeability and Intelligence. Finally, we added an adaptivity item to
assess how well each model was perceived to adapt to users.

4.1.3.3 Procedure and data collection

The agents followed the same procedure as in Study 1. A
total of 71 participants were recruited online. Eight participants
were excluded due to technical issues or failure to adhere to study
requirements, resulting in 63 participants (21 in each model, using
a between-subjects design). The mean age of the participants was
26.9 (£5.9); 39 identified as female, 23 as male, and 1 preferred
not to answer. The self-reported English language fluency was 5.7
(££0.9). The task took, on average, 11.4 (£5.0) minutes to complete;
33 participants used a computer mouse, and 30 participants used a
mouse trackpad.

4.2 Results

As in Study 1, linear mixed-effects models were utilized,
incorporating the same fixed and random factors.
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4.2.1 Behavioral measures
4.2.1.1 Effects of user actions

Accuracy. Participants had an overall accuracy of 64.9%.
GLMMs did not show a significant difference in user accuracy
among conditions (see Table 4). Idle & response time. The mean
idle time was 6.6 (£10.3) seconds, and the mean response time
was 12.5 (£10.3) seconds. Log transformations for both idle
and response times were statistically different across conditions,
with users acting faster when they provided correct answers
and also faster when interacting with the listener-based model.
Bonferroni corrected pairwise comparisons showed that both the
speaker-based and listener-based models led to faster responses by
users compared to the adaptive baseline (see Table 4 and Figure 7).

4.2.1.2 Effects of user uncertainty

LMMs revealed statistically significant differences in how
participants utilized mouse movements across conditions (see
Table 4 and Figure 8). The results indicate that mouse movement
uncertainty is lower in the listener-based model.

4.2.1.3 Effects of system behavior

LMMs revealed a statistically significant difference in the
number of incremental units per condition, also considering the
user’s correctness, as shown in Table 4. Bonferroni corrected pair-
wise comparisons indicated that a significantly lower number
of incremental units were uttered with the baseline condition.
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We calculated the model accuracies aggregated by user (0.623
for the Speaker-Based Model and 0.560 for the Listener-Based
Model), which indicated that the Speaker-Based Model had a
better prediction match with actual user accuracy. In the adaptive
baseline, users requested additional information 25.4% of the time,
resulting in significantly fewer spoken installments compared to the
two models.

4.2.2 Subjective measures
4.2.2.1 Instruction appropriateness

LMMs partially revealed statistically significant effects on
how the incremental units were perceived, using condition and
correctness as fixed factors (see Table 4 and Figure 7). We observed
differences in the perceived amount of information, with the
baseline condition having the lowest perceived information overall,
according to Bonferroni-corrected pairwise comparisons; user
accuracy also influenced whether they felt additional information
was necessary.
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4.2.2.2 System perception

LMMs partially revealed significant effects on how each agent
was perceived (see Table 5 and Figure 9). Bonferroni-corrected
pairwise comparisons showed that the instructions provided by
the listener-based model were perceived as the most complete,
while those from the adaptive baseline were perceived as the least
complete.

4.3 Discussion

The findings in this study indicated that adaptation is necessary,
with behavioral and subjective preferences leaning toward the
listener-based model, even though no significant differences were
observed in task accuracy compared to the speaker-based model.
Adaptivity in this context may imply not just improving accuracy
with more data but also the ability to dynamically adjust data
usage based on user need. Both models were preferred over the
adaptive baseline. We observed statistically significant differences
in how participants rated the amount of information they
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received; the baseline condition was rated with the lowest amount
of information, while the listener-based model was rated with
the highest amount, corroborated by the highest number of
incremental units overall. Users rated the listener-based model’s
instructions as the most complete, indicating favorable outcomes
in user adaptation; however, no significant differences were found
in likeability and intelligence.

Less uncertainty was observed in the listener-based model,
as well as when users provided correct answers. The idle and
response times also suggested lower cognitive load with the listener-
based model, with both models overall performing better than
the baseline, which required more effort from the user. Aligning
with the listener-based model, users’ mouse behavior indicated less
uncertainty, even though they were not aware of which model
was actually considering their mouse movements. The comparison
between a speech-only model and a speech-and-mouse model is
valuable for analytical purposes. These models are not in direct
competition; rather, the comparison helps us understand the
relevance of mouse movements in constructing incremental speech.
Even though user accuracy was consistent across conditions, the
speaker-based model was somewhat better at predicting whether
the user would answer correctly.

5 General discussion
5.1 Key findings

5.1.1 RQ1l: How do human speakers produce
instructions in incremental units?

We observed in the human instructor corpus that instructions
are constructed collaboratively and are often incomplete, including
errors in production and variations in pauses. The main outcome
of the corpus analysis was that speakers consistently adapt their
instructions based on their listeners’ signals of understanding, and
the main goal is to train models of user uncertainty based on
mouse movements. Through the corpus, we also identified the
fundamental attributes of instructions, such as timing and pauses.
The analysis further revealed the presentation of speech through
continuing contributions, as well as “meta-communicative acts,’
such as the user’s public display of understanding, which we define
in our studies through mouse behavior. These incremental units
represent the joint project between the interface and the user
to establish common ground. We can conceptualize instructions
as the intention of the instructor to refer to a specific part of
the assembly, with incremental units serving as the continuing
contributions that achieve that goal.

5.1.2 RQ2: How much information should an
interface convey in each incremental unit?

Study 1 investigated information as the main variable,
specifically exploring whether replicating the behavior of humans
adjusting their instructions to their listeners information needs
has an impact when implemented in a machine. The findings
indicated that information plays a significant role in users’ accuracy
in the task, as well as in their displayed uncertainty. Classification
accuracy was used as a proxy for the quality of each model; however,
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it did not fully capture the model’s effectiveness or how it was
perceived by users, which was addressed in RQ3.

5.1.3 RQ3: How should the interface adapt its
instructions if the user’s attention does not meet
the expected behavior?

RQ3 was examined through a user study that compared three
adaptive models of constructing instructions. We predicted that
differences in users’ accuracy in the task would be observed if the
appropriate model adapted to their information needs; however,
task accuracy did not appear to differ by model. Nevertheless, we
did observe differences in user behavior, with the listener-based
model prompting less uncertainty. Instructions from this model
were perceived as more complete, even though the incremental
units were identical across all conditions. Comparing the three
models showed that ‘observing user signals recurrently gives
interfaces the advantage of planning utterances collaboratively,
with the user being part of the process’ (Kontogiorgos, 2022).

5.2 Implications for adaptive user
interfaces

We use voice rather than text as the medium of communication
because instructions in incremental units have primarily been
observed as a conversational phenomenon. Voice also allows
the user to focus on visually scanning for the referring
objects while receiving information incrementally. Therefore,
these findings have implications primarily for conversational user
interfaces in task collaboration settings, as well as teaching and
instructional interfaces utilizing mouse movements. While not
tested in this study, such instructional behaviors are important for
embodied interfaces that observe the users’ embodied signals when
uttering instructions. Instructions in incremental units provide an
opportunity to convey social behavior, which may be expected by
human users, even when the interlocutor is a computer. Similar to
the use of discourse markers, displaying information incrementally
may help to mitigate directness, balancing between brevity and
information exchange as a politeness strategy (Goodman and
Stuhlmdiiller, 2013; Yoon et al., 2016).

However, presenting information incrementally may not
always be preferred by users, depending on the interface’s utility
and the changes in the user’s state (e.g., during emergencies).
Additionally, different users may interpret incrementality in
various ways, meaning that the interface must also consider users’
personality traits and what they perceive as efficient vs. polite
communication. Recognizing that a turn unit is more flexible than
“push-to-talk” interactions (Ferndndez et al., 2007) enables the
possibility to co-construct instructions with the user (Kontogiorgos
and Gustafson, 2021).

5.3 Limitations and future work

In this paper, we used a set of puzzle pieces to study
incremental utterance production. Similar to the Tangram puzzles
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TABLE 5 System perception measures for each condition.

10.3389/fcomp.2025.1634228

Predictor C1 (oV C3 R? Chi-square p-value
Comply to agent (before) 6.76 6.48 6.52 0.017 1.092
Comply to agent (after) 5.19 5.57 5.86 0.038 2.4145 -
Likeability 4.92 534 491 0.023 1.4472 -
Intelligence 4.69 5.02 4.60 0.028 1.7614 -
Understanding 4.48 4.81 4.90 0.017 1.0864 -
Completeness 4.62 4.95 3.62 0.152 10.217 >
Helpful 3.90 4.52 4.71 0.054 3.4583
Collaborative 4.29 4.95 4.76 0.034 2.1442 -
Adaptive 4.48 4.38 3.62 0.078 5.0468 <0.1
P-value indicators: —p > 0.05, *p < 0.05, ™p < 0.01, ***p < 0.001.
@
Speaker-Based Listener-Based Baseline Speaker-Based Listener-Based Baseline
FIGURE 9
Perceived likeability and intelligence across different conditions.

used in psycholinguistics, the Tetris-like Pentomino shapes lack the
appearance of common objects, making them a suitable paradigm
for examining linguistic alignment when people collaboratively
develop new terms to describe objects. Each step in the puzzle
is grounded incrementally, making it ideal for investigating
computer-generated incremental instructions. This constrained
nature of the task offers an advantage in examining instructions
and provides a level of control over how conversational phenomena
evolve. While our findings provide novel insights into utterance
construction, they should be interpreted with caution. The
collaborative nature of the task may limit generalization to other
forms of conversation, such as “open-world dialogues” (Bohus and
Horvitz, 2009), which are not object-focused and may not involve
collaboration. Nonetheless, the parallel to real-world tasks can
be drawn to any machine-guided assembly, whether it involves
building IKEA furniture or receiving instructions through a visual
interface.

In this article, we used a speaker-and-listener modeling
approach to facilitate mutual understanding. However, a much
simpler model could use delays in task progress as a proxy for a lack
of grounding; when a user does not respond to an instruction, the
system can assume that the instruction was either not heard or not
understood. Since common ground is a “feeling” among speakers, it
can be challenging to methodologically establish a ground truth for
what is understood by users (DeVault, 2008). While we can confirm
that each incremental unit is heard, we cannot ensure that it is also
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understood (as shown in the lack of significant findings on accuracy
in Study 2).

An important limitation of this work has been the use of
prosody. We employed standard TTS services that are not designed
for co-constructed speech; instructions in incremental units are a
conversational phenomenon where appropriate intonation carries
pragmatic information, such as signaling that information may
be incomplete or inviting the listener to participate in its
construction. Current TTS services lack this flexibility, which may
have influenced how users perceived the agents’ adaptation to
their behavior.

Additionally, the utterances were originally spoken by human
instructors and constructed collaboratively; it is inherently
subjective what information is ambiguous, as all human
instructions are, to some degree, ambiguous and incomplete.
User uncertainty was treated as the users attempt to express
clarification requests, which often leads to utterance reformulation
rather than the provision of new information (Schlangen and
Ferndndez, 2007). In this work, however, we chose to always
present new information. Future research should investigate
how to repair utterances when user uncertainty is detected and
explore sequential learning of linguistic strategies based on the
state of the user and the environment (Ekstedt and Skantze,
2020; Sadler et al., 2023; Sadler and Schlangen, 2023), as well
as alternative architectures to speaker-based and listener-based
models. Future work should also consider the impact of such
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proactive interfaces that may have implications for the user’s
task workflow interruption, as well as approach incremental
unit construction through the principles of mixed-initiative user
interfaces (Horvitz, 1999).

Finally, participants were mainly young adults, fluent English
speakers, which limits the generalisability of our findings.
Assistive technologies intended for older adults may face different
interaction needs, communication styles, and attentional patterns.
Future work should therefore validate the proposed approach with
older adult populations to assess its applicability to age-related
assistive settings.

5.4 Real-world applications

The approach of using mouse movements as implicit signals
of user understanding offers significant potential for real-world
applications in domains requiring multitasking interactions. In
assistive technologies, adaptive voice interfaces could monitor
subtle interaction cues (e.g., cursor hesitation) to adjust the timing,
complexity, or repetition of instructions. Outside the mouse-
movement domain, in smart home environments, where users
may interact with devices while engaged in physical tasks, such
interfaces could reduce cognitive effort by incrementally delivering
guidance and monitoring non-verbal cues such as eye gaze, hand
gestures, or interaction delays.

Beyond individual tasks, this research can be applied in
collaborative or instructional settings, such as remote education,
collaborative design platforms, or training simulators. In these
settings, systems that detect user uncertainty through behavioral
signals can better support novice users by tailoring information
delivery to their comprehension level. For example, in remote
technical support, systems can detect whether the user is
struggling with a step and proactively offer clarification without
requiring explicit feedback. In human—robot collaboration,
detecting hesitation or misalignment in operator behavior can
help robots adjust their verbal instructions or actions in real
time.

As the puzzle task used in this study offers experimental
control but may limit ecological validity, future work should
investigate how these findings transfer to more naturalistic
environments and more diverse input modalities. Particularly,
integrating implicit cues beyond mouse trajectories, such
as gaze behavior, body orientation, or hesitation in speech,
may improve robustness and generalisability in real-world
applications.

6 Conclusion

In summary, this article presented: (i) an analysis of the
attributes of human incremental instruction, (ii) empirical evidence
demonstrating the benefits of adapting the delivery of information
to user behavior, and (iii) a user study showing that mouse
movements are a reliable implicit indicator of uncertainty. To the
best of our knowledge, this work is the first to utilize real-time turn-
taking decisions based solely on users’ mouse movements. We also
showed that users’ movement patterns reveal potential ambiguities
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in instructions, which a voice user interface can leverage to adjust
its guidance.

Taken together, our findings demonstrate that process
adaptivity, rather than outcome differences, improves the
interaction dynamics of incremental guidance systems. While
overall task accuracy did not differ significantly between models,
systems that adapted their timing and information granularity in
response to users’ behavior led to smoother interaction, reduced
idle time, and more favorable user perceptions. This highlights the
importance of monitoring ongoing behavioral cues to maintain
mutual understanding during action execution.

The analysis of human incremental instruction provides
insights into how humans structure assistance and how such
strategies can be operationalised in intelligent interfaces. These
results have practical implications for the automatic generation of
human-like, responsive instructions in assistive and collaborative
systems. More broadly, this article contributes to a central challenge
in HCI: how to assess and maintain common ground incrementally
as interaction unfolds.
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