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Abstract

Albrecht and Stone (2018) state that modeling of changing
behaviors remains an open problem “due to the essentially
unconstrained nature of what other agents may do”. In this
work we evaluate the adaptability of neural artificial agents
towards assumed partner behaviors in a collaborative refer-
ence game. In this game success is achieved when a knowl-
edgeable Guide can verbally lead a Follower to the selec-
tion of a specific puzzle piece among several distractors. We
frame this language grounding and coordination task as a re-
inforcement learning problem and measure to which extent
a common reinforcement training algorithm (PPO) is able to
produce neural agents (the Guides) that perform well with
various heuristic Follower behaviors that vary along the di-
mensions of confidence and autonomy. We experiment with a
learning signal that in addition to the goal condition also re-
spects an assumed communicative effort. Our results indicate
that this novel ingredient leads to communicative strategies
that are less verbose (staying silent in some of the steps) and
that with respect to that the Guide’s strategies indeed adapt to
the partner’s level of confidence and autonomy.

1 Introduction
Sometimes we feel like we could continue another person’s
sentence. This happens in particular with people we know
well or we often interact with. A common phrase coined
to this phenomenon is that “people are on the same wave-
length”. And indeed Davidesco et al. (2023) found that brain
activities somewhat synchronize between teachers and stu-
dents during lessons. Even more surprising, synchronicity
becomes a good predictor of the learning success of the stu-
dents. A psycho-linguistic study by Clark and Wilkes-Gibbs
(1986) observed the language use of collaborative partners
during an ongoing goal-oriented interaction: They (implic-
itly) agree on newly introduced noun phrases and a com-
mon strategy to achieve the goal together. Interestingly, the
number of used words drastically decrease during the col-
laboration. The participants strive towards reduced individ-
ual efforts while the number of successful outcomes stays
high. We see that human interaction is characterized by syn-
chronicity (adaption) and the reduction of the individual ef-
fort. In this work we study how (artificial) learning agents
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Figure 1: An exemplary interaction between a Guide and a
Follower that controls the gripper (the black dot). The Guide
observes the scene v0 and refers to a piece initially with l0.
The Follower has only a partial view p0 (the grey box) and
might go wrong. The Guide can provide further information
based on the Follower’s actions until a piece is selected at
time step T . The Guide should learn that less utterances are
necessary with a more autonomous and confident Follower.

adapt to an assumed partner’s behavior. For this, we propose
a simple, but still challenging vision and language ground-
ing task where two players have to coordinate on the selec-
tion of a puzzle piece (Pentomino; Golomb (1996)) while
(i) the actual target piece is only known to one of them (the
Guide), and (ii) only the other can perform the selection (the
Follower). See Figure 1 for an example illustration of this
goal-oriented collaborative game. Clark (1996) points out
that in these situations language acts as a device for solv-
ing the coordination problem: If the participants agree on
a mutually desired outcome (the goal; for example taking
a specific piece) then their individual participatory actions
take part in a joint action. The regularity in behavior, com-
mon ground, and the recurrence of the coordination prob-



lem lets them settle on conventions – and ultimately adapt to
each other. We think that such capabilities would be essen-
tial for future assisting agents that might take part in society
someday (see Park et al. (2023) for a toy example). Albrecht
and Stone (2018) found that modeling of changing behaviors
(or different others) remains an open problem “due to the es-
sentially unconstrained nature of what other agents may do”.
Are neural agents capable to adapt to their interactants and
converging to strategies that become useful only during the
dynamic interaction itself (when the partner’s behavior be-
comes apparent)?

In this paper, we frame the language coordination and
grounding task as a reinforcement learning problem (Sut-
ton and Barto 2018) and evaluate, if and to which extent a
common training algorithm Proximal Policy Optimization
(PPO) (Schulman et al. 2017) is able to produce guiding
neural agents that perform well with a variety of Follower
behaviors in a collaborative setting where the Guide’s utter-
ances become language actions. In this scenario, an agent (or
possibly multiple ones) take step-wise actions in an observ-
able and dynamic environment to maximize a reward signal.

The main idea is that we assume an ongoing interaction in
which the Follower’s behavior changes. After some time the
Follower should become more autonomous and more con-
fident in choosing actions and executing its own plan (as
pointed out by Clark and Wilkes-Gibbs (1986)). But instead
of treating this as a multi-agent setting directly, we follow
Yang et al. (2022) (with the notion of assigning different
agents to different sub-tasks) and learn separate Guides for
each of the (hand-crafted) Follower behaviors (sub-tasks).
The resulting policies represent a Guide’s communicative
strategy at certain points in time of the assumed ongoing
interaction. Our expectations on the learned communicative
strategies of the Guide are that in the beginning (with a less
autonomous, less confident Follower) more is to be said.
And that with a more autonomous and confident Follower
the Guide learns that it “does not need to say anything” to
be successful (and consequently reducing the effort). Our
contributions are the following1:

• We propose a challenging RL environment: a reference
game in which a neural agent (the Guide) has to learn
communication strategies that are successful and reduce
an assumed effort, and

• contribute a plausible Follower policy (the training part-
ner) that is variable on two dimensions: confidence and
autonomy, and

• present strong baseline Guide policies for this difficult
cooperative reference game that are indeed able to bal-
ance out episode success and their individual effort by
learning to stay silent.

2 Related Work
Vision and language navigation. The use of natural lan-
guage to guide an instruction following agent has been heav-
ily studied for the vision and language navigation task (Gu

1Source code is publicly available under: https://github.com/
clp-research/different-follower-behaviors

et al. 2022; Nguyen et al. 2019; Nguyen and III 2019; Fried
et al. 2018; Thomason et al. 2019). For example, Nguyen
and III (2019) train an instruction giver (IG) on a pre-
collected dataset of instructions. The Follower is then al-
lowed to ask the IG for more information during task exe-
cution. Although the setting is very similar, we distinguish
from these works as our Guide has to learn itself when to
provide more information to the Follower. In our setting, the
language back-channel for the Follower is cut, so that the
Guide’s timing and utterance choice becomes essential.

Natural language goals in RL. Using natural language to
describe the goal state in an RL problem has become a com-
mon theme (Chevalier-Boisvert et al. 2019; Gao et al. 2022;
Padmakumar et al. 2022; Pashevich, Schmid, and Sun 2021;
Suhr and Artzi 2022). This research direction is interesting
because it could allow humans to interact more easily with
learned agents. There is work that shows that intermediate
language inputs are a valuable signal in task-oriented visual
environments (Co-Reyes et al. 2019; Mu et al. 2022). Indeed
Huang, Lipovetzky, and Cohn (2023) found that natural lan-
guage can “provide a gradient” towards the goal state. But
they also point out the “brittleness” of these signals because
the language input might align badly with sub-trajectories.
A key challenge here is the variability of expressions in lan-
guage that can be produced and understood in the defined
action space. Even in relatively simple environments, there
might arise an overwhelming amount of situations for an
agent to handle (Chevalier-Boisvert et al. 2019). We weaken
the action space exploration problem by using ideas from
natural language understanding (Moon et al. 2020; E et al.
2019) and let the guide produce language actions in a well-
defined reduced “intent space”. These intents are then ver-
balized (using templates; which could be a conditioned pre-
trained language model) and given to the follower.

Interactive sub-goal generation in RL. Sun et al. (2023)
use a pre-trained large language model to generate possi-
ble plans (in the form of source code) for the completion
of a task. They introduce a distinction between implicit and
explicit closed-loop systems that are able to either refine
single actions or an entire plan respectively. Indeed neu-
ral agents perform better when they self-predict sub-goals
to be achieved (with an intrinsic reward) instead of reach-
ing for the final goal immediately (Jurgenson and Tamar
2023; Chane-Sane, Schmid, and Laptev 2021; Pertsch et al.
2020; Jeon et al. 2022). For example, Lee and Kim (2023)
study the task of finding the best route in a simple visual
domain by training a sub-goal system that predicts inter-
mediate coordinates. In contrast to them, our guiding agent
has to produce a natural language utterance to describe a
sub-goal (and we use referring expressions or directions).
Gürtler, Büchler, and Martius (2021) also address the ques-
tion of “when to provide sub-goals”, which is necessary in
our task. Nevertheless, in distinction to these works, we treat
the sub-goal generation not just as additional information for
the follower’s success but are interested in the learned com-
municative strategies themselves. We treat the sub-goal pro-
viding guide as an individual participant in the environment
similar to a multi-agent setting.



Figure 2: The general information and decision-making flow of the reference game. The Guide observes vt which contains the
full scene in pixel space and additionally the gripper position (4th-channel) and target piece (5th-channel). Given this, the Guide
chooses an intent action at that gets verbalized into a natural language sentence lt. Then, the Follower receives the utterance
lt, the gripper coordinate gt and a symbolic representation of a partial view of the scene pt. The hand-crafted policy updates
the plan accordingly based on its given representation of the world. Finally, the Follower’s next planned action (or wait) is
performed with a certain chance defined by the attached confidence. The process repeats until a piece is taken or time runs out.

Skill learning in cooperative multi-agent RL. We treat
both guide and follower as agents in a cooperative setting
and follow work that uses hand-crafted policies (Wang et al.
2021; Ghosh et al. 2020; Xie et al. 2020) (here a follower
that is able to mimic behavior that varies in autonomy and
confidence). In this sense, our approach is similar to hetero-
geneous skill learning (Chang et al. 2022; Liu et al. 2022;
Hu et al. 2023) where a single agent is trained to acquire
a variety of skills (in our case communicative strategies).
This is, in particular, helpful due to the differences in the
action spaces of the guide (language acts) and the follower
(movements). In addition, this method (of having a fixed
hand-crafted follower policy) allows us to avoid the prob-
lem of emergent communication where agents agree on a
language that becomes inaccessible by humans (Lowe et al.
2019; Mul, Bouchacourt, and Bruni 2019; Kolb et al. 2019).

3 The CoGRIP-GL Reference Game
We use the Collaborative Game of Referential and
Interactive language with Pentomino pieces (CoGRIP) (ref-
erence suppressed) and extend it for Guidance Learning
(CoGRIP-GL). A Guide uses natural language to instruct
a Follower to select a specific target piece using a gripper.
In this setting, both players are constrained as follows: The
Guide can provide utterances but cannot move the gripper.
The Follower can move the gripper but is not allowed to pro-
vide an utterance. This asymmetry in knowledge and skill
forces them to work together and coordinate. Zarrieß et al.
(2016) found that such a reference game leads to diverse lan-
guage use on the Guide’s side. The most similar environment
is from Mordatch and Abbeel (2018) who studied coopera-

tive communication where a listener has to navigate to one
of three landmarks. The target is only known by a speaker
that can not move. The speaker has to learn how to make use
of a restricted vocabulary based on a dense reward signal
(the listener’s distance to the ground-truth landmark). In our
game, we only provide a sparse reward and the communica-
tion signals become verbalized into language utterances.

3.1 Problem Formulation
The Guide has to provide utterances that are useful for the
Follower to navigate and select the correct target piece. We
frame this task as an RL problem with sparse rewards. At
each time-step t, given an observation ot ∈ O of the en-
vironment, the Guide has to choose an action at such that
the overall resulting sequence of actions (a0, ..., at, ..., aT )
(which become verbalized into (l0, ..., lt, ..., lT )) maximizes
the sparse reward R(oT ) = r that is given on episode
end when a piece is selected by the Follower or t reaches
Tmax = 30. This maximal number of steps is sufficient to
navigate to the target piece with some room for error on our
21 × 21 tile maps as the Follower is always starting in the
center of the map (the farthest tile would be 10 horizontal
plus 10 vertical steps away) and allows quicker training.

3.2 Actions
We let the Guide predict “intent” actions and translate them
into sentences instead of predicting words directly to re-
duce the agent’s burden on action space exploration (later
this verbalization process could be done by a language
generation system). Here we focus on the Guide’s choice
among five intent categories: silence, confirm,



decline, directive, reference (Figure 2). For
the directives, we allow more fine-grained control over
the utterance production, so that the agent has to choose be-
tween left, right, up, down and take. And sim-
ilarly, for the references this means that the agent has
to choose among possible preference orders PCS, PSC,
SPC, CPS, SCP and CSP, in which P, C and S stand for
piece, color, and shape, respectively. These preference or-
ders (PO) define the order in which properties are compared
between the target piece and its distractors. This means, for
example, that a CSP-based reference is likely to mention the
target piece’s color because the color is tried first to distin-
guish the target from its distractors (and it is very unlikely
that all pieces share the same color). These six reference
actions, five directive actions, silence, confirm
and decline lead to a total of |A| = 14 actions. In com-
parison, the vocabulary contains 37 tokens and the maximal
sentence length is 12 which results in 3712 possible utter-
ances when predicting individual words instead of intents.

3.3 Verbalization
The chosen intent is then verbalized based on templates by
application of the following rules:

• silence→ <empty string>

• confirm→ Yes this [way|<piece>]

• decline→ Not this [way|<piece>]

• directive(take)→ Take <piece>

• directive(dir)→ Go <dir>

• reference(PO)→ Take the <IA(PO)>

where <piece> resolves to a piece’s color and shape
when the current gripper position is located over a piece (or
otherwise simply piece). The direction <dir> resolve to
the according intent name. The fine-grained reference intent
(PO) is given to the “Incremental Algorithm” (Dale and Re-
iter 1995), which produces the referring expression for ref-
erence verbalization (Appendix A.1).

Rewards Following Chevalier-Boisvert et al. (2019), we
define a basic sparse reward for playing the game:

RGame = 1− 0.9 ∗ (T/Tmax) (1)
In addition, we introduce a sparse reward for the Guide’s

individual effort in an episode:

RGuide = 1− 0.9 ∗ (EGuide/Tmax) (2)
where the Guide’s effort EGuide is the sum over the as-

sumed efforts of taking the respective actions:

EGuide =

T∑
t=1


0, if at ∈ {silence}
1.0, if at ∈ {confirm,decline}
1.1, if at ∈ {directive}
1.2, if at ∈ {reference}

(3)
These action-based efforts follow the assumed cognitive

load for producing them i.e. saying nothing is the cheapest
and comparing pieces with each other to produce a reference
is the highest.

TPS Tasks Boards
Training 275 2500 700
Validation 25 175 175
Testing 60 420 420

Table 1: The number of tasks and boards in each data
split. The target pieces for the tasks are chosen from non-
overlapping sub-sets of target piece symbols (TPS). For
evaluation splits, we mix-in training pieces as distractors.
We construct boards with up to 7 distractors (and at least 1).

Finally, we give an additional reward (ROutcome) of +1
when the correct piece or a penalty of −1 if the wrong or no
piece has been taken at all, so that:

R = (RGame +RGuide)/2 +ROutcome (4)

Given this formulation, the Guide has to play the game by
being active (not just stay silent), achieve the goal (get the
bonus) and reduce its individual effort (stay mostly silent) to
reach a high reward.

3.4 Observations
The environment exposes at each time-step t an observation
ot that contains the following:

• the Follower’s gripper coordinates gt = (x, y)

• the Guide’s utterance lt (might be empty)
• a full view of the scene vt for the Guide
• a partial view pt of the scene for the Follower

The visual observations are represented as 2-dimensional
images (with RGB color channels), but the Follower only
receives a 11 × 11-sized cut out, centered on the gripper
position (see Figure 2). We add a 4th channel to the visual
observations to indicate the gripper position by setting the
values to zero at gt and one otherwise. In addition, the Guide
is informed about the target piece coordinates by setting the
according values to zero for the target piece and ones oth-
erwise on the 5th channel of its visual observation. A piece
occupies five adjacent tiles and is not allowed to overlap with
another one. For our purposes, the Follower receives a sym-
bolic representation of the partial view (as a neural learner
might receive) where color and shapes are directly repre-
sented as numbers (and not pixels; see Appendix A.1).

3.5 Tasks
The task is that a Guide provides utterances to a Follower
that has to take an intended target piece among several other
pieces (the distractors). Thus, a game instance of this task is
defined by (i) the number and identity of pieces on the board,
(ii) including which of these is the the target piece, (iii) and
by the size of the board (see Figure 2 for an example).

The appearance and positioning of the pieces is derived
from symbolic piece representations: a tuple of shape (9),
color (6), and position (8). We experiment with 360 of these
symbolic pieces which include all shapes, colors, and posi-
tions and split them into distinct sets. Therefore, the target
symbols for the testing tasks are distinct from the ones seen



during training (they might share color and shape though,
but are for example positioned elsewhere). We ensure the re-
producibility of our experiments by constructing 2500 train-
ing, 175 validation, and 420 testing tasks representing scenes
with a map size of 21 × 21 tiles (see Table 1 and Ap-
pendix A.2 for the detailed generation process).

4 The Follower Behaviors
For the Follower, we take inspiration from Sun et al. (2023)
who suggest a plan-based approach towards solving text-
based tasks with language models: given a task’s natural lan-
guage instruction the model initially produces a plan, which
is then executed and repeatedly refined or revised. We im-
plement a policy that keeps track of a plan that contains up
to 10 actions (the plan horizon; which is exactly the number
of actions needed to reach the diagonal corner of the par-
tial view). Our Follower’s behavior of following the plan is
adjustable along two dimensions: confidence and autonomy.

Confidence. The actions in the plan are associated with
a decreasing probability of being executed (the “confidence
triangle” in Figure 2) so that given a discount factor ϕ ∈
[0, 1] and a lower threshold L ∈ [0, 1] we calculate:

Confidence(ai) = max(ϕi,L) (5)
Which introduces a notion of confidence: either the

planned action is executed or a wait action occurs (hesita-
tion). Furthermore, this conceptualizes that a Follower be-
comes increasingly unsure about the continuation of the plan
without receiving feedback from the Guide.

Autonomy. The revision process for our Follower policy
is conceptually divided into five sub-programs that run after
the Guide’s utterance is received, parsed and the assumed
intent type is determined, as follows:

• on silence: The Follower executes, based on confi-
dence, the next action in the plan (if available). Other-
wise, it waits.

• on confirm: The Follower sets the confidence for all
actions in the current plan to 1. Then the next action is
chosen as described under on silence.

• on decline: The Follower erases the current plan. As
the plan is then empty, a wait action will be returned.

• on directive: The Follower parses the utterances for
the concrete directives (a direction or a “take” prompt).
For “take”, the plan is replaced with take action under the
assumption that this is the last action to be performed.
Otherwise, the plan is filled with actions that align with
the direction prompt. Then, the next action is chosen as
described under on silence.

• on reference: The Follower updates its internal tar-
get descriptor (color, shape, position) based on the new
reference. Given this updated descriptor, the Follower
identifies candidate coordinates in the symbolic repre-
sentation of the current field of view, for example, co-
ordinates that are blue given a reference “Take the blue
piece”. If such a coordinate is identified and the Follower
has not already approached it, then the shortest path to

that candidate is established as a new plan. Otherwise,
if the descriptor only contains a position, then a direction
towards that position is approached. In the case where the
Follower is already in that position, a randomly chosen
piece in the field of view is approached. When none of
this matches, then the current plan proceeds as described
under on silence.

Now, the autonomy defines which procedures the Fol-
lower undertakes, when intermediate feedback is missing
(the Guide stays silent). The cautious Follower is perform-
ing solely the previously defined procedures: when the plan
is exhausted, then it waits until a new directive or refer-
ence is given. If this Follower is over an assumed target
piece, then it waits until the “take” directive is given by the
Guide. In contrast, the eager Follower aims to actually take
an assumed target piece when approaching it in the current
field of view. Furthermore, the eager Follower autonomously
looks for target candidates at each step (as described in the
on reference procedure) and potentially revises the plan
(also when the Guide stays silent).

5 Learning Communication Policies for
Different Follower Behaviors

Mnih et al. (2015) showed that vision-driven reinforcement
learning policies can achieve human-level performance in
pixel-based environments like Atari games. Similarly, the
Guide as an agent in our environment has the challenging
task to learn:
• when to produce an utterance (or stay silent),
• what to produce (confirm, decline, direct, refer), and
• how to produce it (which directive or preference order)

based solely on visual observation of the board state and the
follower actions.

5.1 The Guide
The observation ot = (vt) with vt ∈ R21×21×5 is en-
coded into a 128-dimensional feature vector ṽt ∈ R using
a 4-layer convolutional neural network similar to that by
Chevalier-Boisvert et al. (2019). Then, the feature vector ṽt
is fed through an LSTM (Hochreiter and Schmidhuber 1997)
which functions as a memory mechanism (updating a state
vector ht that is passed forward in time). Given the result-
ing memory-conditioned visual feature vector x̃t, we learn a
parameterized actor-critic-based policy π(x̃t; θ) ∼ at where

Figure 3: The Guide’s recurrent vision network.



the actor predicts a distribution over the action space (in-
tents) and the critic estimates the value of the current state
(Figure 3). For the recurrent policy, we use the implementa-
tion of StableBaselines3-Contrib v1.8.0 (Raffin et al. 2021),
which performs back-propagation through time until the first
step in an episode.

5.2 Experiment Setup
In this work, we evaluate if and to which extent the PPO
algorithm (Schulman et al. 2017) is able to produce guid-
ing neural agents in a challenging reference game where
the learning signal is a sparse reward that also involves
the assumed accumulated effort over actions. In particular,
we are interested in the question of whether the resulting
learned policies (the Guides) are adapted towards the Fol-
lower behaviors in such ways that align with expectations
based on the Follower’s dimensions of confidence and au-
tonomy. Thus, for the experiments, we initiate cautious and
eager Follower’s with increasing confidence discount fac-
tors so that ϕ ∈ [0.75, 0.85, 0.90, 0.95, 0.97, 0.99].

We use StableBaselines3 v1.8.0 (Raffin et al. 2021) to
train for each of these Follower behaviors a policy. We train
each policy with 4 parallel running environments (batch
size) and 1 million time steps in total. This means that each
board in the training split is seen at least 13 times (and even
more often when mean T < 30). Every 100k steps during
training, we evaluate the policies against the validation set.
And we keep the policies (the Guides) that achieve the high-
est mean episode reward based on these validation runs. We
conduct the experiments with three different seeds.

5.3 Results and Discussion
Overall Results. The overall results in Table 2 show that
learned policies are communicative strategies that can suc-
cessfully guide the Follower (towards the target piece) in
most of the cases (on average in 92% of the test episodes).
This indicates that the Guide learned the goal of the game
and hereby almost reaches the best episode length (on aver-
age only 1.93 steps longer than the shortest path). The over-
all average effort (9.72) covers only about 71.5% of the av-
erage episode length (13.58) which means that the policies
altogether produce an utterance in about 2 out of 3 steps.

Has the Guide learned to stay silent? Indeed, Figure 4
shows that the policies converge to a mode where the
silence intent is chosen in at least 23% of the steps: The
policies are in general able to learn to say nothing. The most
chosen intent is reference, which is reasonable as it is
directly providing additional information (the target piece
description) to the Follower and triggers a plan revision.

What preference orders are chosen for the reference
production? The reference intents define the order in
which properties are compared between the target piece and
its distractors. This means, for example, that a CSP reference
is likely to mention the target piece’s color because the color
attribute is first compared to distinguish the target from its
distractors (and it is very likely that at least one distractor
gets excluded, because otherwise all pieces would share the

Metrics: mR ↑ mSR ↑ mEPL ↓ mEff. ↓
— Cautious —

100% Silent 0.00 0.00 30.00 0.00
100% Ref. -1.04 0.00 30.00 34.8
PPO-Guide 1.55 0.94 13.97 10.72

ϕ=75 1.52 0.93 15.02 11.07
ϕ=85 1.47 0.96 14.13 14.63
ϕ=90 1.59 0.95 13.87 10.33
ϕ=95 1.57 0.94 13.67 10.49
ϕ=97 1.57 0.93 13.27 10.00
ϕ=99 1.57 0.90 13.88 7.78

— Eager —
100% Silent 0.45 0.23 16.78 0.00
100% Ref. 0.86 0.75 18.57 21.09
PPO-Guide 1.57 0.91 13.19 8.72

ϕ=75 1.54 0.92 13.54 10.04
ϕ=85 1.60 0.89 14.28 6.15
ϕ=90 1.49 0.92 13.24 11.67
ϕ=95 1.59 0.92 12.86 8.39
ϕ=97 1.58 0.90 12.64 7.28
ϕ=99 1.59 0.93 12.58 8.76

— Overall —
100% Silent 0.23 0.11 23.39 0.00
100% Ref. -0.09 0.37 24.29 27.94
PPO-Guide 1.56 0.92 13.58 9.72

Table 2: The mean rewards (mR), success rates (mSR in %),
episodes lengths (mEPL) and efforts of the agents on the test
tasks for the chosen autonomy and confidence combinations
of the Follower (averaged over all seeds). A shortest path
solver reaches 11.65 mEPL (3.13 std). Given this, the upper
bound for the mean reward is 1.83. Best values in bold.

Chosen Intent: S C D O R
— Cautious —

PPO-Guide 0.27 0.04 / 0.09 0.60
ϕ=75 0.27 0.08 / 0.08 0.56
ϕ=85 0.06 0.08 / 0.09 0.78
ϕ=90 0.29 0.09 / 0.08 0.53
ϕ=95 0.28 / / 0.09 0.63
ϕ=97 0.30 / / 0.09 0.61
ϕ=99 0.43 / / 0.09 0.48

— Eager —
PPO-Guide 0.34 0.06 0.06 0.09 0.46

ϕ=75 0.25 0.26 0.03 0.08 0.38
ϕ=85 0.53 0.01 0.09 0.08 0.29
ϕ=90 0.16 0.05 0.11 0.08 0.59
ϕ=95 0.34 / 0.13 0.09 0.45
ϕ=97 0.42 / / 0.11 0.47
ϕ=99 0.33 0.02 / 0.08 0.57

— Overall —
PPO-Guide 0.31 0.05 0.03 0.09 0.53

Table 3: The intent’s mean chance of being chosen at a step
(for each policy evaluated on the test split) broken down by a
Follower’s confidence and autonomy. The intents are abbre-
viated as follows: silence (S), confirm (C), decline
(D), directive (O) and reference (R). It appears rea-
sonable that the cautious Follower’s actions are never de-
clined because the behavior is to always wait for the Guide’s
instructions (in contrast to the eager ones that explore occa-
sionally on their own). Similarly, the higher confidence Fol-
lower’s require less re-assurance (confirms) of their actions.



Figure 4: An intent’s mean chance of being chosen at a step
(for all learnt policies evaluated on the test split).

Figure 5: The distribution of the preference order choices for
the reference action (from Figure 4). The preferences
over position (P), shape (S) and color (C) are given to the IA
for reference production.

Figure 6: The linear regressions with a confidence interval
of 99% for the mean silence rates measured during the test
episodes for all learnt policies (3 seeds per follower). Fitted
separately for the confidences {75, 85} and {90, 95, 97, 99}.

same color). Thus, it is reasonable that there are communica-
tive strategies learnt that choose CSP in the majority of cases.
This means that the guide produces a reference that likely
includes the shape and the color of the target piece. These
properties are indeed useful for the follower to identify and
approach the target in its field of view. An the other hand,
preference orders that test positions first (PCS and PSC) are
also chosen rather often. These strategies lead the Follower
to the target piece without having it necessarily already in
the field of view.

The effects of the Follower’s autonomy mode. We ex-
perimented with two levels of autonomy of the Follower.
The results in Table 2 show that the policies that learn from
interactions with the eager Follower require on average 2.00
points less effort than the cautious one. This is reasonable
as the eager Follower is autonomously updating the plan and
looking for target candidates at each step. Along these lines,
it is also reasonable that the decline intent is never selected
for the cautious Follower (see Table 3) because it never tried
to approach a target piece without the Guide referencing it.

The effects of the Follower’s confidence. The differ-
ences in the intent selection strategy of the learned policies
(Guides) shown in Table 3 indicate that Guides learnt from
interaction with more confident Follower’s (ϕ > 0.9) pro-
duce less or no confirm actions. This seems reasonable
as the decrease in the execution probability of these Follow-
ers is less steep and a reference action has a similar ef-
fect. Furthermore, we see a slight tendency of Guide’s to
stay quieter (on average) when trained with more confident
Followers as shown in Figure 6. Though we cannot see such
a tendency for Guide’s trained with less confident Followers.

6 Conclusions
In this work, we examined an interesting intersection be-
tween psycho-linguistic studies and deep learning with re-
inforcement learning. We considered neural agents as pos-
sible interaction partners (for humans) in a challenging ref-
erence game where a Guide has to learn when, what, and
how information (actionable intents) is to be provided to a
Follower. As a proxy for different Follower behaviors, we
implemented a hand-crafted policy that is controllable along
two dimensions: autonomy in exploration and confidence in
executing an action. We experimented with a learning sig-
nal that in addition to the goal condition also respects an
assumed communicative effort. Our results indicate that this
formulation of the learning signal leads to communicative
strategies that are less verbose (stay silent more often) and
that the resulting Guide behaviors are adapted (in terms of
intent selection distributions) to the Follower’s autonomy
and confidence levels. We think this work presents a useful
case study towards neural agents that have to learn adapted
communication strategies in an interactive setting (possibly
with humans). In future work, we want to investigate other
reward formulations for our proven reference game and eval-
uate the learning of communication policies in an even more
incremental setting where the utterance production process
spans multiple time steps (one word at a time) and must be
possibly interrupted and re-adjusted during the interaction.
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A Appendix
Robot image in Figure 1 adjusted from https://commons.
wikimedia.org/wiki/File:Cartoon Robot.svg. That file was
made available under the Creative Commons CC0 1.0 Uni-
versal Public Domain Dedication.

A.1 Environment Details
Board The internal representation of the visual state is a
2-dimensional grid that spans W ×H tiles where W and H
are defined by the map size. A tile is either empty or holds an
identifier for a piece (the tile is then occupied). The pieces
are defined by their colour, shape and coordinates and oc-
cupy five adjacent tiles (within a virtual box of 5 × 5 tiles).
The pieces are not allowed to overlap with another piece’s
tiles. For a higher visual variation, we also apply rotations to
pieces, but we ignore the rotation for expression generation,
though this could be an extension of the task. The colors are
described in Table 4.

Name HEX RGB
red #ff0000 (255, 0, 0)
green #008000 (0, 128, 0)
blue #0000ff (0, 0, 255)
yellow #ffff00 (255, 255, 0)
brown #8b4513 (139, 69, 19)
purple #800080 (128, 0, 128)

Table 4: The colors for the Pentomino pieces.

Symbols The symbolic repesentations for the shapes are:
P (2), X (3), T (4), Z (5), W (6), U (7), N (8), F (9), Y (10).
The colors are encoded as: red (2), green (3), blue (4), yellow
(5), brown (6), purple (7). The 0-symbol is reserved for out-
of-world tiles (which can occur in the partial view). The 1-
symbol is reserved for an empty tile.

Gripper The gripper can only move one position at a step
and can move over pieces, but is not allowed to leave the
boundaries of the board. The gripper coordinates are defined
as {(x, y) : x ∈ [0,W ], y ∈ [0, H]}.

References The Incremental Algorithm (Algorithm 1), in
the formulation of (Dale and Reiter 1995), is supposed to
find the properties that uniquely identify an object among
others given a preference over properties. To accomplish this
the algorithm is given the property values P of distractors
in M and of a referent r. Then the algorithm excludes dis-
tractors in several iterations until either M is empty or ev-
ery property of r has been tested. During the exclusion pro-
cess the algorithm computes the set of distractors that do not
share a given property with the referent and stores the prop-
erty inD. These properties inD are the ones that distinguish
the referent from the others and thus will be returned.

Algorithm 1: The IA on symbolic properties as based on the
formulation by van Deemter (2016)

Require: A set of distractors M , a set of property values P
of a referent r and a linear preference order O over the
property values P

1: D ← ∅
2: for P in O(P) do
3: E ← {m ∈M : ¬P (m)}
4: if E ̸= ∅ then
5: Add P to D
6: Remove E from M
7: end if
8: end for
9: return D

The algorithm has a meta-parameter O, indicating the
preference order, which determines the order in which the
properties of the referent are tested against the distractors. In
our domain, for example, when color is the most preferred
property, the algorithm might return BLUE, if this property
already excludes all distractors. When shape is the preferred
property and all distractors do not share the shape T with the
referent, T would be returned. Hence even when the refer-
ent and distractor pieces are the same, different preference
orders might lead to different expressions.

There are 3 expression templates that are used when only
a single property value of the target piece is returned by the
Incremental Algorithm (IA):

• Take the [color] piece
• Take the [shape]
• Take the piece at [position]

Then there are 3 expression templates that are selected when
two properties are returned:

• Take the [color] [shape]
• Take the [color] piece at [position]
• Take the [shape] at [position]

And finally there is one expression templates that lists all
property values to identify a target piece:

• Take the [color] [shape] at [position]

Vocabulary Overall, the property values and sentence
templates lead to a small vocabulary of 37 words:

• 9 shapes: P, X, T, Z, W, U, N, F, Y

• 6 colors: red, green, blue, yellow, brown, purple

• 6 position words: left, right, top, bottom, center (which
are combined to e.g., right center or top left)

• 12 template words: take, the, piece, at, yes, no, this, way,
go, a, bit, more

• 4 special words: <s>, <e>, <pad>, <unk>

The maximal sentence length is 12.



A.2 Task Details
To create a task, we first place the target piece on a board.
Then, we sample uniformly random from all possible pieces
and place them until the wanted number of pieces is reached
(we experiment with 2 to 8 pieces on a board). If a piece
cannot be placed after a certain amount of tries, then we re-
sample a piece and try again. The coordinates are chosen at
random uniform from the coordinates that fall into an area of
the symbolic description. We never set a piece into the cen-
ter, because that is the location where the gripper is initially
located. In this way, we construct 100 training boards (or 1
evaluation board respectively) for each number of pieces (2-
8). To ensure that a board scene in the training split cannot
be aligned with a target piece, we create 3 extra tasks for a
single board by choosing extra targets (when fewer than 4
pieces are on a board, then we create a task for each piece).
For evaluation, we only create a single task for each target
piece symbol.

A.3 Guide Details
Agent Parameters: 602, 447

feature dims 128
normalize images True
shared lstm True
enable critic lstm False
n lstm layers 1
lstm hidden size 128

Table 5: Policy arguments for the the RecurrentPPO agent

Policy Architecture We instantiate the actor-critic PPO
agent with an architecture defined by pi=[64, 64],
vf=[64, 64] meaning that the actor is a 2-layer feedfor-
ward network with 64 parameters per layer. The critic has
the same architecture, but does not share the weights with
the actor.

Vision Encoder The visual encoder is a convolutional
neural network (CNN) with 4 layers that maps the visual
observations vt ∈ R21×21×5 into a 128-dimensional fea-
tures vector ṽ ∈ R. We consecutively apply four blocks of
(nn.Conv2d(),nn.BatchNorm2d(),nn.ReLU())
with same padding where the kernel size is 3× 3, except for
the first blocke where we set the kernel size to 1×1. After the
fourth block we apply a nn.AdaptiveMaxPool2d((1,
1)) layer from PyTorch v1.13.0 (Paszke et al. 2019) to
collapse the spatial dimensions of the feature maps.

Learning Algorithm We use the RecurrentPPO imple-
mentation from StableBaselines-Contrib v1.8.0 (Raffin et al.
2021) with the hyper-parameters in Table 6 (and the defaults
otherwise).

A.4 Experiment Details
We trained the agents simultaneously on 8 GeForce GTX
1080 Ti (11GB) where each of them consumed about 4GB
of GPU memory. The training for the 36 configurations took
around 144 hours in total (about 4h for the 1 million steps

learning rate 3e-4
clip range 0.2
gamma 0.99
gae lambda 0.95
ent coef 0.0
vf coef 0.5
max grad norm 0.5
lr init 3e-4
n steps 128
batch size 128
num epochs 10

Table 6: RecurrentPPO hyperparameters

each). The random seeds were set to 49184, 98506 or 92999
respectively. As the evaluation criteria on the testings tasks
we chose success rate which indicates the relative number
of episodes (in a rollout or in a test split) where the agent
selected the correct piece:

mSR =

∑N
si

N
where si =

{
1, for correct piece
0, otherwise
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