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Abstract

Non-sentential utterances (e.g., short-
answers as in “Who came to the party?"—
“Peter.”) are pervasive in dialogue. As
with other forms of ellipsis, the elided ma-
terial is typically present in the context
(e.g., the question that a short answer an
swers). We present a machine learning
approach to the novel task of identifying
fragments and their antecedents in multi-
party dialogue. We compare the perfor-
mance of several learning algorithms, us-
ing a mixture of structural and lexical fea-
tures, and show that the task of identifying
antecedents given a fragment can be learnt
successfully £(0.5) = .76); we discuss
why the task of identifying fragments is
harder (f(0.5) = .41) and finally report

on a combined taskf(0.5) = .38).

I ntroduction

pot sdam de

c. A:Who was this? Peter Miller? (W/as
this Peter Miller?

Such utterances pose an obvious problem for natural
language processing applications, namely that the
intended information (in (1-a)-B a proposition) has
to be recovered from the uttered information (here,
an NP meaning) with the help of information from
the context.

While some systems that automatically resolve
such fragments have recently been developed
(Schlangen and Lascarides, 2002; Fernandez et al.,
2004a), they have the drawback that they require
“deep” linguistic processing (full parses, and also in-
formation about discourse structure) and hence are
not very robust. We have defined a well-defined
subtask of this problem, namely identifyirfgag-
ments(certain kinds of NSUs, see below) and their
antecedents (in multi-party dialogue, in our case),
and present a novel machine learning approach to it,
which we hypothesise will be useful for tasks such
as automatic meeting summarisatfon.

The remainder of this paper is structured as fol-

Non-sentential utterances (NSUs) as in (1) are pe|,QWS. _In the next s_ection we further specify the task
vasive in dialogue: recent studies put the proportiog"d different possible approaches to it. We then de-
of such utterances at around 10% across differe§fPe the corpus we used, some of its characteris-
types of dialogue (Fernandez and Ginzburg, 2003iCs with respect to fragments, and the features we
Schlangen and Lascarides, 2003).

(1)

a. A:Who came to the party?
B: Peter. (Peter came to the pariy.

b. A:ltalked to Peter.
B: Peter Miller? (=Was it Peter Miller
you talked to?

extracted from it for machine learning. Section 4
describes our experimental settings and reports the
results. After a comparison to related work in Sec-
tion 5, we close with a conclusion and some further
}(Zechner and Lavie, 2001) describe a related task, linking

guestions and answers, and evaluate its usefulness inrtexto
of automatic summarisation; see Section 5.



work that is planned. reconstructiort.
To keep matters simple, we concentrate in this pa-
2 TheTasks per on NSUs of a certain kind, namely those that a)

As we said in the introduction, the main task wedo not predominantly have a discourse-management
want to tackle is to align (certain kinds of) NSusfunction (like for example backchannels), but rather
and theirantecedentsNow, what characterises this CONvVey messages (i.e., propositions, questions or
kind of NSU, and what are their antecedents? ~ €quests)—this is what distinguishieagmentsrom

In the examples from the introduction, the NSu£Lther NSUs—and b) have individual utterances as
can be resolved simply by looking at the previougnteceplents. In the terminology of (Schlangen and
utterance, which provides the material that is elidelascarides, 2003), fragments of the latter type are
in them. In reality, however, the situation is not thafeSolution-via-identitfragments, where the elided
simple, for three reasons: First, it is of course noffformation can be identified in the context and
always thepreviousutterance that provides this ma-N€€d not be inferred (as opposedrésolution-via-
terial (as illustrated by (2), where utterance 7 is relnferencefragments). Choosing only this special
solved by utterance 1); in our data the average di§ind of NSUs poses the question whether this sub-

tance in fact is 2.5 utterances (see below). group is distinguished from the general group of
fragments by criteria that can be learnt; we will re-
(2) 1 B: [...] Whatelse should be done ? turn to this below when we analyse the errors made
2 C: Moreintelligence. by the classifier
3 More good intelligence . N .
4 Right . We have defined two approaches to this task. One
5 D: Intelligentintelligence . . is to split the task into two sub-tasks: identifying
6 B Eeect(t)‘;rniﬁ)pr']'ca"o” of face and voice fragments in a corpus, and identifying antecedents
7 C: More [...] intermingling of the for fragments. These steps are naturally performed
agencies , you know . sequentially to handle our main task, but they also

[from NSI20011115] allow the fragment classification decision to come

Second, it's not even necessarily a single utteffom another source—a language-model used in an
ance that does this—it might very well be a Spaﬁutomatic speech recognition system, for example—
of utterances, or something that has to be inferredd to use only the antecedent-classifier. The other
from such spans (parallel to the situation with pro@PProach is to do both at the same time, i.e. to clas-
nouns, as discussed empirically e.g. in (Strube arify Pairs of utterances into those that combine a
Miiller, 2003)). (3) shows an example where a ne#fagment and its antecedent and those that don’t. We
topic is broached by using an NSU. It is possible t&ePort the results of our experiments with these tasks
analyse this as an answer to tpeestion under dis- Pelow, after describing the data we used.
cussion“what shall we organise for the party?”, as .
(Fernandez et al., 2004a) would do; a question, hOV\:Ig- Corpus, Features, and Data Creation
ever, which is onlyimplicitly posed by the previous 3.1 Corpus

discourse, and hence this is an example of an NSKk material we have used six transcripts from the
that does not have an overt antecedent. “NIST Meeting Room Pilot Corpus” (Garofolo et al.,

3) [after discussing a number of different topics] 2004)’ a corpus _Of recordings ‘r_’md transgrlptlons of
1 D So equipment. multi-party meetings. Those six transcripts con-
2 I can bring [...] T oo

2The boundaries are fuzzy here, however, as backchan-
nels can also be fragmental repetitions of previous materia
. and sometimes it is not clear how to classify a given utter-
Lastly, not all NSUs should be analysed as being thgce. A similar problem of classifying fragments is diseass

result of ellipsis: backchannels for example (like thén (Schlangen, 2003) and we will not go further into this here

“Right” in utterance 4 in (2) above) seem to directly e have chosen a multi-party setting because we are ulti-
mately interested in automatic summarisation of meetirigs.

fulfil their discourse function without any need for s paper here, however, we view our task as a “stand-alone
task”. Some of the problems resulting in the presence of many

[ from NSI 20011211 ]



average distance - 3 ward: for each utterance, a number of features was
(utterances): 2.5

o declarative 159 (52%) derived automatically (see next section) and the cor-
« interrogative 140 (46%) rect class (fragment / other) was added. (Note
ggggllgrs;tfu?/e 23(??‘;)6% ; that none of the manually annotated attributes were
3 interrogative (23%) used.) This resulted in a file with 5,999 data points
B unclassfd. 2 (0.7%) for classification. Given that there were 307 frag-
« being last in their turn 142 (46%) i ; ; _ ; ;
3 being first in their turn 150 (529%) ments, this means that in this data-set there is a ratio

positives (fragments) vs. negatives (non-fragments)

for the classifier of 1:20. To address this imbalance,

we also ran the experiments with balanced data-sets
with a ratio of 1:5.

The other tasks, antecedent-identification
(antecedent-tagk and antecedent-fragment-
identification €ombined-taskrequired the creation
sist of 5,999 utterances, among which we identifiedf data-sets containing pairs. For this we created
307 fragment-antecedent paird With 5.1% thisis an “accessibility window” going back from each
a lower rate than that reported for NSUs in other codtterance.  Specifically, we included for each
pora (see above); but note that as explained abowgferance a) all previous utterances of the same
we are actually only looking at a sub-class of alspeaker from the same turn; and b) the three last
NSUs here. utterances of every speaker, but only until one

For these pairs we also annotated some more &peaker took the turn again and up to a maximum
tributes, which are summarised in Table 1. Not®f 6 previous utterances. To illustrate this method,
that the average distance is slightly higher than tha@iven example (2) it would form pairs with utterance
reported in (Schlangen and Lascarides, 2003) for as fragment-candidate and all of utterances 6-2,
(2-party) dialogue (1.8); this is presumably due tdut not 1, because that violates condition b) (it is the
the presence of more speakers who are able to igecond turn of speaker B).
ply to an utterance. Finally, we automatically an- Inthe case of (2), this exclusion would be a wrong
notated all utterances with part-of-speech tags, ugecision, since 1 is in fact the antecedent for 7. In
ing Tr eeTagger (Schmid, 1994), which we've general, however, this dynamic method proved good
trained on the switchboard corpus of spoken larat capturing as many antecedents as possible while
guage (Godfrey et al., 1992), because it containkgeping the number of data points manageable. It
just like our corpus, speech disfluencfes. captured 269 antecedent-fragment pairs, which had

We now describe the creation of the data we useah average distance of 1.84 utterances. The remain-
for training. We first describe the data-sets for théhg 38 pairs which it missed had an average distance
different tasks, and then the features used to repref 7.27 utterances, which means that to capture those

Table 1. Some distributional characteristics. de-
notes antecedenf, fragment.)

sent the events that are to be classified. we would have had to widen the window consid-
erably. E.g., considering all previous 8 utterances
3.2 Data Sets would capture an additional 25 pairs, but at the cost

Data creation for the fragment-identification taslof doubling the number of data points. We hence
(henceforth simplyfragment-task was straightfor- chose the approach described here, being aware of
speakers are discussed below. the introduction qf a certain blz_als. _
“We have used theimax tool (Miller and Strube, 2001)) As we have said, we are trying to linkterances
for Et;he annotation. . one a fragment, the other its antecedent. The no-
To test the reliability of the annotation scheme, we had fﬁPn of utteranceis however less well-defined than
subset of the data annotated by two annotators and found a sa . . .
isfactoryx-agreement (Carletta, 1996) of= 0.81. one might expect, and the segmentation of contin-
®The tagger is available free for academic research fromous speech into utterances is a veritable research
http://wwins. uni-stuttgart.de/projekte/ — noplem on its own (see e.g. (Traum and Heeman,

corpl ex/ TreeTagger/ Deci si onTreeTagger. htm . . .
P 99 99 1997)). Often it is arguable whether a prepositional



Structural features

tures, which give information about the (discourse-

di s distancen. — 3, in utterances . .

sspk  same speaker yes/no )strL_JcturaI relgtlon between andj3. T_he rationale
nspk  number speaker changes (= # turns) behind choosing them should be cleagu for ex-
iqu  number of intervening questions ample indicates in a weak way whether there might
alt « last utterance in its turn?

bf t

G first utterance in its turn?

Lexical / Utterance-based features

have been a topic change, and higbpk should
presumably make an antecedent relation between
andg less likely.

bvb (tensed) verb present [ .

bds disfluency present iB? We have also used some lexical or utterance-

a\%ﬂ o Con:a!ns ql;]estiog mark based features, which describe lexical properties of

a o contains wn wor . .. . .

bpr ratio of polar particlesyes no, maybeetc..) the individual uFterances and lexical relations be-
/ other ing tween them which could be relevant for the tasks.

laplr Iratlotﬁf F;O'ar particles im For example, the presence of a verlgiis presum-

a ength ofa .. . .

Ibe length ofg3 gbly predictive for its being a fra_gment or not, as

nra  ratio nouns / non-nouns im is the length. To capture a possible semantic rela-

nra  rationouns/non-nounsifi tionship between the utterances, we defined two fea-

rab ratio nouns in3 that also occur iy . .

rap  ratiowords ing that also occur i tures. The more direct oneab, looks at verbatim

god  google similarity (see text) re-occurrences of nouns fromin 3, which occur

Table 2: The Features

for example in check-questions as in (4) below.

(4) A: | saw Peter.
B: Peter? (2Who is this Peter you say?

Less direct semantic relations are intended to be

phrase for example should be analysed as an adjuRgptured bygod, the second semantic feature we
(and hence as not being an utterance on its own) gge7 |t is computed as follows: for each pdir, )

as a fragment. In our experiments, we have followegs nouns froma and 3, Google is called (via the
the decision made by the transcribers of the origisoogle API) with a query for, for v, and forz and

nal corpus, since they had information (e.g. abouf together. The similarity then is the average ratio of
pauses) which was not available to us.

For the antecedent-task, we include only pairs
where S (the second utterance in the pair) is a

fragment—since the task is to identify an anteceder@oogleSimiIarity(x y) = (hits(%y)
for already identified fragments. This results in a

pair vs. individual term:

hits(x,y) )*1
hits(y) = 2

hits(x)

data-set with 1318 data points (i.e., we created on . .
. . : We now describe the experiments we performed
average 4 pairs per fragment). This data-set is suf-

- - .“~and their results.
ficiently balanced between positives and negatives,

and so we did not create another version of it. Thg Experiments and Results
data for the combined-task, however, is much big-
ger, as it contains pairs for all utterances. It consistél Experimental Setup
of 26,340 pairs, i.e. a ratio of roughly 1:90. For thisFor the learning experiments, we used three classi-
reason we also used balanced data-sets for trainirfiggrs on all data-sets for the the three tasks:
where the ratio was adjusted to 1:25. e SLIPPER (Simple Learner with Iterative Prun-
ing to Produce Error Reduction), (Cohen and Singer,
1999), which is a rule learner which combines
Table 2 lists the features we have used to represele separate-and-conquer approach with confidence-
the utterances. (In this table, and in this section, wigited boosting. Itis unique among the classifiers that
denote the candidate for being a fragment wiitnd ————— , o ,

The name is short fogoogle distancewhich indicates its

the candidate fo.r being's antecedent with.) relatedness to the feature used by (Poesio et al., 2004 }iatw-
We have defined a number of structural feaever a measure aimilarity, not distance, as described above.

3.3 Features



we have used in that it can make use of “set-valued.2 Results

features, e.g. strings; we have run this learner botfe Taples 3-5 show the results of the experiments.
with only the features listed above and with the UtThe entries are roughly sorted by performance of the
terances (andostags) as an additional feature.  ¢jassifier used; for most of the classifiers and data-

e TIMBL (Tilburg Memory-Based Learner), ges for each task we show the performance for base-
(Daelemans et al., 2003), which implements §ne intermediate feature set(s), and full feature-set,
memory-based learning algorithme() which pre- 4 the rest we only show the best-performing set-
dicts the class of a test data point by looking at itging \we also indicate whether a balanced or unbal-
distance to all examples from the training data, USjnced data set was used. l.e., the first three lines
ing some distance metric. In our experiments, W§, Taple 3 report on MaxEnt on a balanced data set
have used the weighted-overlap method, which agy the fragment-task, giving results for the baseline,
signs weights to all features. baselinesir b+bf t , and the full feature-set.

o MAXENT, Zhang Le’s C++ implementatidrof  \ye pegin with discussing the fragment task. As
maximum entropy modelling (Berger et al., 1996)apje 3 shows, the three main classifiers perform

In our experiments, we used L-BFGS parameter egsghly equivalently. Re-balancing the data, as ex-
timation. pected, boosts recall at the cost of precision. For all

We also implemented a nalve bayes classifier andtings (i.e., combinations of data-sets, feature-sets
ran it on the fragment-task, with a data-set consisting, 4 classifier), except re-balanced maxent, the base-
only of the strings and POS-tags. line (verb in3 yes/no, and length of) already has

To determine the contribution of all features, wesome success in identifying fragments, but adding
used an iterative process similar to the one describgg remaining features still boosts the performance.
in (Kohavi and John, 1997; Strube and Mullerjaying available the string (condition s.s; slipper

2003): we start with training a model using a baseyith set valued features) interestingly does not help
line set of features, and then add each remaining ;ppermuch.

feature individually, recording the gain (w.r.t. the - 5y arall the performance on this task is not great.
measure ((0.5), to be precise)), and choosing theyyy is that? An analysis of the errors made shows
best-performing feature, incrementally until no fur,,q problems. Among the false negatives, there is a
ther gain is recorded. All individual training- and high number of fragments like “yeah” and “mhm”,
evaluation-steps are performed using 8-fold Crosgyhich in their particular context were answers to
validation (given the small number of positive i”'questions, but that however occur much more of-
stances, more folds would have made the number f, 45 hackchannels (true negatives). The classifier,
instances in the test set set too small). without having information about the context, can of
The baselines were as follows: for the fragmentzrse not distinguish between these cases, and goes
task, we usedvb andl be as baseline, i.e. we et o the majority decision. Among the false positives,
the classifier know the length of the candidate angle fing utterances that are indeed non-sentential,
whether the candidate contains a verb or not. F®y,t for which no antecedent was marked (as in (3)
the antecedent-task we tested a very simple baseli%ove)’ i.e., which are not fragments in our narrow
containing only of one feature, the distance betweegnse. |t seems, thus, that the required distinctions
a and g (di's). The baseline for the combined-4re not ones that can be reliably learnt from looking
task, finally, was a combination of those two bases; the fragments alone.
lines, i.e.bvb+l be+di s. The full feature-set for  The antecedent-task was handled more satisfac-
the fragment-task wasbe, bvb, bpr, nrb, oy as Table 4 shows. For this task, a naive base-
bft, bds (since for this task there was noto |ine (“always take previous utterance”) preforms rel-
compute features of), for the two other tasks it waggely well already; however, all classifiers were
the complete set shown in Table 2. able to improve on this, with a slight advantage for

8Available fromht t p: / / homepages. i nf . ed. ac. uk/ the maxent modelf(0.5) = 0.76). As the entry
s0450736/ maxent tool kit. htnl . for MaxEnt shows, adding to the baseline-features



DataSet Cl. || Recall Precison f(0.5) f£(1.0) f£(2.0)

B; bl m 0.00 0.00 0.00 0.00 0.00
B; bl +nr b+bf t m 36.39 31.16 0.31 0.33 0.35
B;all m 40.61 44.10 0.43 0.42 0.41
UB; al | m 2213 65.06 0.47 0.33 0.25
B; bl t 31.77 21.20 0.22 0.24 0.28
B; bl +nr b+bpr +bds t 42.18 41.26 041 0.42 0.42
B; al | t 44.54 32.74 0.34 0.37 0.41
UB;bl +nrb t 26.22 59.05 0.47 0.36 0.29
B; bl 5 21.07 16.95 0.17 0.18 0.20
B; bl +nr b+bft +bds s 36.37 49.28 0.46 0.41 0.38
B; al | S 36.67 43.31 0.42 0.40 0.38
UB;bl +nrb s 28.28 57.88 0.48 0.38 0.31
B ss| 3257 42.96 0.40 0.36 0.34
B b 55.62 19.75 0.23 0.29 0.41
UB b 66.50 20.00 0.23 0.31 0.45

Table 3: Results for the fragment task. (Cl. = classifier usdtere s = slipper, s.s = slipper + set-valued
features, t = timbl, m = maxent, b = naive bayes; UB/B = (urghetd training data.)

DataSet Cl. || Recall Precison f(0.5) f(1.0) f£(2.0)

dis=1 44.95 44 .81 0.45 0.45 0.45
UB; bl 0 0 0.0 0.0 0.0
UB; bl +awh 43.21 52.90 0.50 0.47 0.45

m
m
UB; bl +tawh+god m 36.98 75.31 0.62 0.50 0.41
UB; bl +awh+god+| be+l al +i qu+nra+buh m 64.26 80.39 0.76 0.71 0.67
UB; al | m 58.16 73.57 0.69 0.64 0.60
s
S
s
S
t
t
t
t

UB; bl 0.00 0.00 0.00 0.00 0.00
UB; bl +agm 36.65 78.44 0.63 0.49 0.41
UB; bl +agmtr ab+i qu+l al 49.72 79.75 0.71 0.61 0.54
UB; al | 49.43 72.57 0.66 0.58 0.52
UB; bl 0 0 0.0 0.0 0.0
UB; bl +agm 36.98 73.58 0.61 0.49 0.41

46.41 77.65 0.68 0.58 0.50

UB; bl +agmtawh+r ab+i qu .
60.57 58.74 0.59 0.60 0.60

UB; al |

Table 4: Results for the antecedent task.

DataSet Cl. || Recall Precison f(0.5) £(1.0) f£(2.0)

B; bl m 0.00 0.00 0.00 0.00 0.00
B;bl+rap m 5.83 40.91 0.18 0.10 0.07
B; bl +rap+god m 7.95 55.83 0.25 0.14 0.10
B; bl +r ap+god+nspk m 11.70 49.15 0.30 0.19 0.14
B; bl +r ap+god+nspk+al t +awh+nr a+l al m 20.27 50.02 0.38 0.28 0.23
B; al | m 23.29 43.79 0.36 0.30 0.25
UB; bl +r ap+god+nspk+i qu+nr a+bds+r ab+awh m 13.01 54.87 0.33 0.21 0.15
B; bl s 0.00 0.00 0.00 0.00 0.00
B; bl +god s 11.80 35.60 0.25 0.17 0.13
B; bl +god+bds s 14.44 46.98 0.32 0.22 0.17
B; al | S 17.78 41.96 0.32 0.24 0.20
UB; bl +al t +bds+god+sspk+rap s 11.37 56.34 0.31 0.19 0.13
B; bl t 0.00 0.00 0.00 0.00 0.00
B; bl +god t 17.20 29.09 0.25 0.21 0.19
B; al | t 17.87 19.97 0.19 0.19 0.18
UB; bl +god+i qu+rab t 14.24 41.63 0.29 0.21 0.16
B; bl +trab+buh s.s 8.63 54.20 0.26 0.15 0.10

Table 5: Results for the combined task.



information about whether is a question or not al- of fragments, namely questions of the type “Who?”,
ready boost the performance considerably. An andlWhen?”, etc. §luiced. However, that paper does
ysis of the predictions of this model then indeediot address the task dédentifying those in a cor-
shows that it already captures cases of question apds (which in any case should be easier than our
answer pairs quite well. Adding the similarity fea-fragment-task, since those fragments cannot be con-
ture god then gives the model information aboutfused with backchannels).
semantic relatedness, which, as hypothesised, cap-Overlapping from another direction is the work
tures elaboration-type relations (as in (1-b) and (1-gresented in (Zechner and Lavie, 2001), where the
above). Structural informationi qu) further im- task of aligning questions and answers is tackled.
proves the model; however, the remaining featurebhis subsumes the task of identifying question-
only seem to add interfering information, for perfor-antecedents for short-answers, but again is presum-
mance using the full feature-set is worse. ably somewhat simpler than our general task, be-
If one of the problems of the fragment-task wagause questions are easier to identify. The authors
that information about the context is required to disalso evaluate the use of the alignment of questions
tinguish fragments and backchannels, then the hoped answers in a summarisation system, and report
could be that in the combined-task the classifiean increase in summary fluency, without a compro-
would able to capture these cases. However, the penise in informativeness. This is something we hope
formance of all classifiers on this task is not satisto be able to show for our tasks as well.
factory, as Table 5 shows; in fact, it is even slightly There are also similarities, especially of the an-
worse than the performance on the fragment tadkcedent task, to the pronoun resolution task (see
alone. We speculate that instead of of cancelling oetg. (Strube and Miller, 2003; Poesio et al., 2004)).
mistakes in the other part of the task, the two goalmterestingly, our results for the antecedent task are
(let 5 be a fragment, and a typical antecedent) in- close to those reported for that task. The problem of
terfere during optimisation of the rules. identifying the units in need of an antecedent, how-
To summarise, we have shown that the task dadver, is harder for us, due to the problem of there
identifying the antecedent of a given fragment ideing a large number of non-sentential utterances
learnable, using a feature-set that combines struthat cannot be linked to a single utterance as an-
tural and lexical features; in particular, the inclusiortecedent. In general, this seems to be the main differ-
of a measure of semantic relatedness, which wa&snce between our task and the ones mentioned here,
computed via queries to an internet search enginahich concentrate on more easily identified mark-
proved helpful. The task of identifyinggsolution- ables (questions, sluices, and pronouns).
via-identity) fragments, however, is hindered by the )
high number of non-sentential utterances which cad® Conclusionsand Further Work

be confused with the kinds of fragments we are inge have presented a machine learning approach
terested in. Here it could be helpful to have a methog, ihe task of identifying fragments and their an-
that identifies and filters out backchannels, presuma.egents in multi-party dialogue. This represents a
ably using a much more local mechanism (as for €Xge||defined subtask of computing discourse struc-
ample proposed in (Traum, 1994)). Similarly, theyre which to our knowledge has not been studied so
performance on the combined task is low, also dug \we have shown that the task of identifying the
to a high number_ of confusions of packchannels anghiecedent of a given fragment is learnable, using
fragments. We discuss an alternative set-up belowsg a1 res that provide information about the structure
5 Reated Work of the discourse b_etween antecedent and fragment,
and about semantic closeness.
To our knowledge, the tasks presented here have soThe other tasks, identifying fragments and the
far not been studied with a machine learning apcombined tasks, however, did not perform as well,
proach. The closest to our problem is (Fernandez etainly because of a high rate of confusions be-
al., 2004b), which discussetassifyingcertain types tween general non-sentential utterances and frag-



ments (in our sense). In future work, we will try meeting room pilot corpus. IRroceedings of the Interna-

a modified approach, where the detection of frag- fional Language Resources Conference (LRECDEpon,
. . e ortugal, May.

ments is integrated with a classification of utterances g Y

as backchannels, fragments, or full sentences, add- Godfrey, E. C. Holliman, and J. McDaniel. 1982viTCH-

h the antecedent task onlv ranks pairs. leavin BOARD: Telephone speech corpus for research and devlop-
where e _y P ' 9 ment. InProceedings of the IEEE Conference on Acoustics,
open the possibility of excluding a supposed frag- Speech, and Signal Processimpges 517-520, San Fran-
ment by using contextual information. Lastly, we Cisco, USA, March.
are planning to integrate our classifier into a proron Kohavi and George H. John. 1997. Wrappers for feature
cessing pipeline after the pronoun resolution step, selection.Atrtificial Intelligence Journgl97(1-2):273-324.
to see whether this would improve both our perforchyistoph Miiler and Michael Strube. 2001. MMAX: A Tool
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