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Abstract T S

We present a method for resolving definite ex- ‘LP ' ’E -
ophoric reference to visually shared objects e
that is based on a) an automatically learned, i i
simple mapping of words to visual features a -Ib’: b

(“visual word semantics”), b) an automat-

ically learned, semantically-motivated utter- "

ance segmentation (“visual grammar”), and c) ‘:ﬁ—

a procedure that, given an utterance, uses b) B
to combine a) to yield a resolution. We evalu-

ated the method both on a pre-recorded corpus Figure 1: Example Scene

and in an online setting, where it performed . . .
with 81% (chance: 14%) and 66% accuracy, discourse salience), the module uses the evidence

respectively. This is comparable to results re-  Present in the utterance (words, syntax) and in the
ported in related work on simpler settings. visual scene (visual features) to derive at a new as-
sumption about likely referents. If we call such an
assumption aonfidence functior that assigns to
each object in the domaif?, a number between 0
The method described in this paper is a module @nd 1; i.e.c: O — R, thenreference resolutiois a

a dialogue system that acts as a collaborator of fanctionr that takes a triple of an initial confidence
human player in the task of manipulating visuallyfunction ¢, an utterance:, and a visual scene repre-
present puzzle objects. An example scene is shoveentationv to yield an updated confidence function
in Figure 1 (the indices andb are added here for ¢/. Formally:r : C x U x V — C.

illustrative purposes). Given utterances like those in In the following, we describe the resources
(2), the task of the module is to identify the likely needed to set up the module, its subcomponents, and
referents (herea andb, respectively): the evaluation we performed. We close by relating

) ) ) . the proposed method to prior work and discussing
() a.Take the piece in the middle on the left S'defuture extensions.

b.Take the piece in the middle.

1 The Task

2 Resources

More formally, the task can be characterised as foR.1 Corpus

lows: possibly starting with am priori assump- As our method is based on automatically learned

tion about likely referents (e.g., from knowledge ofmodels, a corpus is required. Our intended use case
Tsystem is implemented for German input; for ease oifS sin,1ilar to the setting dgscribed in_(_SChIangen and

description we use examples from our corpus translated infs€rnandez, 2007), but with the addition of a shared

English here. visual context. We collected 300 scene descriptions



(of scenes containing between 1 and 12 distinct, T b T

monochrome shapes, randomly placed and rotated Y

on a rectangular area) using the two-part methodol- ?Fr _

ogy of (Siebert et al., 2007) that yields recordings r'r

and quality assessments (here: attempts to follow [ 'F .

other subjects’ instructions). We also later recorded L

an additional 300 scene descriptions by a single e ':Dﬂ

speaker, to further increase our data base. '|_ |
After transcription of the recordings (239 min- Dh B

utes of audio material), we discarded roughly 6% s

of the instructions because they could not be fol-

lowed by the evaluators, and a further 4% because Figure 2: Scene with Horizontal Group Detection

the complexity of the descriptions was outside the

scope of what we wanted to model. The remaining, .o the macro-structure of a spatial expres-

instructions were then automatically cleaned from P P

. . . ion, i.e., the division intdarget (the denoted ob-
dysfluencies, morphologically lemmatised and POS .. . . .
: ject; T) and optionalandmarls (other objects; LM)
tagged, and annotated as described below.

o and theirrelationto the target (R; see example in Ta-

2.2 Computer Vision ble 2). The second level annotates the spatial-lexical
The other required resource is a visual perceptiofinction of each word, e.g., whether the word de-
algorithm. We use it to compute a feature reprenotes a piece or a configuration of pieces (Table 1).

sentation of every visual scene as presented in t@efully ‘parsed’ example is shown in Table 2.
data collectior?: First, each object is represented by

|
J
=1

a number ofobject featuresuch as size / length /| Name Description Examples
height of the bounding box, center of gravity, num{ ! lexical reference T piece,cross
ber of edges. Seconthpological featuresiote for dr topological direction | top [eft Corner

_g ) . polog . . d-s topological distance outer left
each object the distance to certain points on the g numeric second column
board (edges, center, etc.) and to other objects.p-g | group (perceptually active) from the leftcolumn
(For details on the computation of such features sge 9];5 Isygthetlli: f?lr?duﬁ Fhehth:a%’('ﬁfﬁ on the left
for example (Regier and Carlson, 2001).) Lastly, andmark fietd ™ n the Middle

. . ) r prepositional relation in the middle

we also compute groupings of objects by clustering graq grading function exactly right

along columns and rows or both (see Figure 2 for an
illustration). For each group, we compute two sets  Table 1: Visual Lexical Functions of Words
of topological featuresone for the objects within

the group (e.g., distance to the center of the grouR)we T soss T fom [ e T second [ solumn [ Trom [ T [ artheton]

and one for the C(_)nfiguratiqn of groups (distance ¢F—————1—1 @ T 53 A
group to other objects). This set of features was se- (&) - Annotation of spatial lexical functions
lected to be representative of typicalbasicvisualfed-_ I T [ R [ [ ™M [ M [IM [IM] T ]

(b) - Segmentation of visual spatial parts

tures.
Table 2: Example Annotation / ‘Parse’

3 Components
3.1 Visual Grammar Given the requirement for robustness, we decided

The ‘visual grammar’ segments utterances accor&\gainst a hand-written grammar for deriving such

ing to functional aspects on two levels. The firsfnnotations; the moderate size of our corpus on
- the other hand made for example Markov model-

representation of the scene (which object is where); theifes transformation-based learning to create this (shal-
are designed to also be derivable from digital images idstea

using standard computer vision techniques (Shapiro anzkSto 10W) segmentation grammar, converting the seg-
man, 2001); this is future work, however. mentation task into a tagging task (as is done in



(Ramshaw and Marcus, 199ter alia). In our ap- most frequent value as representative for a feature
proach, each token that is to be tagged is itself repréfor a given word), performed better, and is hence
sented in three different forms or layers: lemmatisethe method we chose.
word, as POS-tag, and by its spatial-functional tag For b), dimensionality reduction, we again chose
(as in Table 1; added by simple look-up). All thesea very simple approach (much simpler than for ex-
layers can be accessed in the learned rules. Aparnple (Roy, 2002)): features are filtered out as ir-
from this, the module is a straightforward imple-relevant for a given lemma features if their variance
mentation of (Ramshaw and Marcus, 1995), whicks above a certain threshold. To give an example,
in turn adapts (Brill, 1993) for syntactic chunking. for the lemmaleft the distribution of values of the
_ _ featurex_distanceto_centervaries with as of 0.05,

3.2 Visual Word Semantics that of y_distanceto_centerwith a o of 0.41. We
To learn the visual semantics of words we impleempirically determined the setting of the threshold
mented a simple technique for grounding words isuch that it excluded the lattér.
perceptions. Roughly, the idea is to extract from L
all instances in which a word was used in the train3-3 Combination
ing corpus and all associated scenes a prototypical s
visual meaning representation by identifying those
features whose vaI_ues best predict the_app_)ro_pna_te-the | % second catamn | from | te 1 [ atthe top
ness of the word given a scene. (This is similar in . — !
spirit to the approach used in (Roy, 2002).) i

As material for learning, we only used the sim-
ple expressions (target only, no landmark) in the meeer 1:[ LANDMARK RELATIONS |l
corpus, to ensure that all words used were in some :
way ‘about’ the target. The algorithm iterates overrigure 3: Steps of the Algorithm for Example Utterance
all pairs of utterance and scene and saves for each
lemma all visual information. This creates for each The combination algorithm works through the
lemma a matrix of feature values with as many rowsegmented utterance and combines visual word se-
as there were occurrences of the lemma. The valuasantics to yield a reference hypothesis. Figure 3
in each column (that is, for each feature) are theiflustrates this process for the example from Table 2.
normalised to the interval [-1, 1] and the standar®n detecting a landmark segment (Step 1), the res-
deviation is recorded. olution algorithm ‘activates’ the appropriate group;

The next tasks then are a) to compute one sinwvhich one this is is determined by tipeg item in
gle representative value for each feature, but onlhe landmark segment. (Hereolumr). The group
b) for those features that carry semantic weight fais then treated as a single object, and (Step 2) the
the given word (i.e., to compute a dimensionality resemantics of topological terms _¢dor d.s) in the
duction). E.g., for the lemma ’left’, we want the fea-landmark segment is applied to it (more on this in
ture x_distanceto_centerto be part of the semantic a second). For our example, this yields a ranking
model, but noly_distanceto_center of all columns with respect to their ‘left-ness’. The

One option for a) is to simply take the averageordinal ‘second’ finally simply picks out the second
value as representative for a feature (for a giveslement on this list-the second group w.r.t. the prop-
word). While this works for some words, it causeserty of leftness (Step 3). The expressions in the tar-
problems for others which imply a maximisationget segment are now only applied to the members
and not a prototypisation. E.g., the lemnedt is of the group that was selected in this way; i.e., the
best represented byaximalvalues of the feature semantic models of ‘top’ and ‘cross’ are now only
x_distanceto_center not by the average of all val- applied to the objects in that column (Steps 4 to 6).
ues for all occurrences ¢éft (this will yield some- ~ 3With more data and hence the possibility to set aside a de-

thing like leftish). Perhaps surprisingly, representaye|gpment set, one could and should of course set such dthres
tion through the majority value, i.e., choosing theold automatically.




Semantic word models are applied through a sime adapt to the capabilities of the system.
ple calculation of distance between values (of se- .
mantic model and actual scene): the closer, the bet- Conclusions

ter the match of word to scene. (Modulo selectivityye have presented a method for resolving defi-
of a feature; for a feature that occurred for all lemnite, exophoric reference to objects that are visu-
mata with a high specificity (smat), good matches ally co-present to user and system. The method
are expected to be closer to the prototype value thambines automatically acquired models (a ‘visual
for features with a high variability.) word semantics’, a simple, but effective mapping be-
This method encodes parts of the utterance s@ween visual features and words; and a ‘visual gram-
mantics procedurally, namely the way how certaiiar’, a semantically motivated segmentation of ut-
phrases (here grouped under the ldaetimark se- terances) and hard-coded knowledge (combination
mantically modify other phrases (here grouped urprocedure). To us, this combines the strengths of
der the labetarge?). This encoding makes the al-two approaches: statistical, where robustness and
gorithm perhaps harder to understand than semaide coverage is required, hard-coding, where few,
tic composition rules tied to syntactic rules, but itout complex patterns are concerned.
also affords a level of abstraction over specific syn- We are currently integrating the module into a
tactic rules: our very general conceptslaidmark working dialogue system; in future work we will in-
andtarget cover various ways of modification (e.g.vestigate the use of digital images as input format.
through PPs or relative clauses), adding to the ro-

bustness of the approach. Acknowledgements
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