
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 745–753,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Incremental Dialogue Processing in a Micro-Domain

 Gabriel Skantze1
 Dept. of Speech, Music and Hearing

KTH, Stockholm, Sweden
gabriel@speech.kth.se

 David Schlangen
Department of Linguistics

University of Potsdam, Germany
das@ling.uni-potsdam.de

Abstract

This paper describes a fully incremental dia-
logue system that can engage in dialogues
in a simple domain, number dictation. Be-
cause it uses incremental speech recognition
and prosodic analysis, the system can give
rapid feedback as the user is speaking, with
a very short latency of around 200ms. Be-
cause it uses incremental speech synthesis
and self-monitoring, the system can react to
feedback from the user as the system is
speaking. A comparative evaluation shows
that naïve users preferred this system over a
non-incremental version, and that it was
perceived as more human-like. 1

1 Introduction

A traditional simplifying assumption for spoken
dialogue systems is that the dialogue proceeds
with strict turn-taking between user and system.
The minimal unit of processing in such systems
is the utterance, which is processed in whole by
each module of the system before it is handed on
to the next. When the system is speaking an ut-
terance, it assumes that the user will wait for it to
end before responding. (Some systems accept
barge-ins, but then treat the interrupted utterance
as basically unsaid.)

Obviously, this is not how natural human-
human dialogue proceeds. Humans understand
and produce language incrementally – they use
multiple knowledge sources to determine when it
is appropriate to speak, they give and receive
backchannels in the middle of utterances, they
start to speak before knowing exactly what to
say, and they incrementally monitor the listener’s
reactions to what they say (Clark, 1996).

1 The work reported in this paper was done while the first
author was at the University of Potsdam.

This paper presents a dialogue system, called
NUMBERS, in which all components operate in-
crementally. We had two aims: First, to explore
technical questions such as how the components
of a modularized dialogue system should be ar-
ranged and made to interoperate to support in-
cremental processing, and which requirements
incremental processing puts on dialogue system
components (e.g., speech recognition, prosodic
analysis, parsing, discourse modelling, action
selection and speech synthesis). Second, to in-
vestigate whether incremental processing can
help us to better model certain aspects of human
behaviour in dialogue systems – especially turn-
taking and feedback – and whether this improves
the user’s experience of using such a system.

2 Incremental dialogue processing

All dialogue systems are ‘incremental’, in some
sense – they proceed in steps through the ex-
change of ‘utterances’. However, incremental
processing typically means more than this; a
common requirement is that processing starts
before the input is complete and that the first
output increments are produced as soon as possi-
ble (e.g., Kilger & Finkler, 1995). Incremental
modules hence are those where “Each processing
component will be triggered into activity by a
minimal amount of its characteristic input”
(Levelt, 1989). If we assume that the ‘character-
istic input’ of a dialogue system is the utterance,
this principle demands that ‘minimal amounts’ of
an utterance already trigger activity. It should be
noted though, that there is a trade-off between
responsiveness and output quality, and that an
incremental process therefore should produce
output only as soon as it is possible to reach a
desired output quality criterion.

2.1 Motivations & related work
The claim that humans do not understand and
produce speech in utterance-sized chunks, but

745

rather incrementally, can be supported by an
impressive amount of psycholinguistic literature
on the subject (e.g., Tanenhaus & Brown-
Schmidt, 2008; Levelt, 1989). However, when it
comes to spoken dialogue systems, the dominant
minimal unit of processing has been the utter-
ance. Moreover, traditional systems follow a
very strict sequential processing order of utter-
ances – interpretation, dialogue management,
generation – and there is most often no monitor-
ing of whether (parts of) the generated message
is successfully delivered.

Allen et al. (2001) discuss some of the short-
comings of these assumptions when modelling
more conversational human-like dialogue. First,
they fail to account for the frequently found mid-
utterance reactions and feedback (in the form of
acknowledgements, repetition of fragments or
clarification requests). Second, people often
seem to start to speak before knowing exactly
what to say next (possibly to grab the turn), thus
producing the utterance incrementally. Third,
when a speaker is interrupted or receives feed-
back in the middle of an utterance, he is able to
continue the utterance from the point where he
was interrupted.

Since a non-incremental system needs to proc-
ess the whole user utterance using one module at
a time, it cannot utilise any higher level informa-
tion for deciding when the user’s turn or utter-
ance is finished, and typically has to rely only on
silence detection and a time-out. Silence, how-
ever, is not a good indicator: sometimes there is
silence but no turn-change is intended (e.g., hesi-
tations), sometimes there isn’t silence, but the
turn changes (Sacks et al., 1974). Speakers ap-
pear to use other knowledge sources, such as
prosody, syntax and semantics to detect or even
project the end of the utterance. Attempts have
been made to incorporate such knowledge
sources for turn-taking decisions in spoken dia-
logue systems (e.g., Ferrer et al., 2002; Raux &
Eskenazi, 2008). To do so, incremental dialogue
processing is clearly needed.

Incremental processing can also lead to better
use of resources, since later modules can start to
work on partial results and do not have to wait
until earlier modules have completed processing
the whole utterance. For example, while the
speech recogniser starts to identify words, the
parser can already add these to the chart. Later
modules can also assist in the processing and for
example resolve ambiguities as they come up.
Stoness et al. (2004) shows how a reference reso-
lution module can help an incremental parser

with NP suitability judgements. Similarly, Aist et
al. (2006) shows how a VP advisor could help an
incremental parser.

On the output side, an incremental dialogue
system could monitor what is actually happening
to the utterance it produces. As discussed by
Raux & Eskenazi (2007), most dialogue manag-
ers operate asynchronously from the output com-
ponents, which may lead to problems if the
dialogue manager produces several actions and
the user responds to one of them. If the input
components do not have any information about
the timing of the system output, they cannot re-
late them to the user’s response. This is even
more problematic if the user reacts (for example
with a backchannel) in the middle of system
utterances. The system must then relate the
user’s response to the parts of its planned output
it has managed to realise, but also be able to stop
speaking and possibly continue the interrupted
utterance appropriately. A solution for handling
mid-utterance responses from the user is pro-
posed by Dohsaka & Shimazu (1997). For in-
cremental generation and synthesis, the output
components must also cope with the problem of
revision (discussed in more detail below), which
may for example lead to the need for the genera-
tion of speech repairs, as discussed by Kilger &
Finkler (1995).

As the survey above shows, a number of stud-
ies have been done on incrementality in different
areas of language processing. There are, how-
ever, to our knowledge no studies on how the
various components could or should be inte-
grated into a complete, fully incremental dia-
logue system, and how such a system might be
perceived by naïve users, compared to a non-
incremental system. This we provide here.

2.2 A general, abstract model
The NUMBERS system presented in this paper can
be seen as a specific instance (with some simpli-
fying assumptions) of a more general, abstract
model that we have developed (Schlangen &
Skantze, 2009). We will here only briefly de-
scribe the parts of the general model that are
relevant for the exposition of our system.

We model the dialogue processing system as a
collection of connected processing modules. The
smallest unit of information that is communi-
cated along the connections is called the incre-
mental unit (IU), the unit of the “minimal
amount of characteristic input”. Depending on
what the module does, IUs may be audio frames,
words, syntactic phrases, communicative acts,

746

etc. The processing module itself is modelled as
consisting of a Left Buffer (LB), the Processor
proper, and a Right Buffer (RB). An example of
two connected modules is shown in Figure 1. As
IU1 enters the LB of module A, it may be con-
sumed by the processor. The processor may then
produce new IUs, which are posted on the RB
(IU2 in the example). As the example shows, the
modules in the system are connected so that an
IU posted on the RB in one module may be con-
sumed in the LB of another module. One RB
may of course be connected to many other LB’s,
and vice versa, allowing a range of different
network topologies.

Figure 1: Two connected modules.

In the NUMBERS system, information is only

allowed to flow from left to right, which means
that the LB may be regarded as the input buffer
and the RB as the output buffer. However, in the
general model, information may flow in both
directions.

A more concrete example is shown in Figure
2, which illustrates a module that does incre-
mental speech recognition. The IUs consumed
from the LB are audio frames, and the IUs posted
in the RB are the words that are recognised.

Figure 2: Speech recognition as an example of incre-

mental processing.

We identify three different generic module
operations on IUs: update, purge and commit.
First, as an IU is added to the LB, the processor
needs to update its internal state. In the example
above, the speech recogniser has to continuously
add incoming audio frames to its internal state,

and as soon as the recogniser receives enough
audio frames to decide that the word “four” is a
good-enough candidate, the IU holding this word
will be put on the RB (time-point t1). If a proces-
sor only expects IUs that extend the rightmost IU
currently produced, we can follow Wirén (1992)
in saying that it is only left-to-right incremental.
A fully incremental system (which we aim at
here), on the other hand, also allows insertions
and/or revisions.

An example of revision is illustrated at time-
point t2 in Figure 2. As more audio frames are
consumed by the recogniser, the word “four” is
no longer the best candidate for this stretch of
audio. Thus, the module must now revoke the IU
holding the word “four” (marked with a dotted
outline) and add a new IU for the word “forty”.
All other modules consuming these IUs must
now purge them from their own states and pos-
sibly revoke other IUs. By allowing revision, a
module may produce tentative results and thus
make the system more responsive.

As more audio frames are consumed in the ex-
ample above, a new word “five” is identified and
added to the RB (time-point t3). At time-point t4,
no more words are identified, and the module
may decide to commit to the IUs that it has pro-
duced (marked with a darker shade). A commit-
ted IU is guaranteed to not being revoked later,
and can hence potentially be removed from the
processing window of later modules, freeing up
resources.

3 Number dictation: a micro-domain

Building a fully incremental system with a be-
haviour more closely resembling that of human
dialogue participants raises a series of new chal-
lenges. Therefore, in order to make the task more
feasible, we have chosen a very limited domain –
what might be called a micro-domain (cf. Edlund
et al., 2008): the dictation of number sequences.
In this scenario, the user dictates a sequence of
numbers (such as a telephone number or a credit
card number) to the dialogue system. This is a
very common situation in commercial telephone-
based dialogue systems, which however operate
in a non-incremental manner: The user is first
asked to read out the whole number sequence,
which the system then confirms. Should the rec-
ognition be incorrect, the user has to repeat the
whole sequence again. In an incremental version
of this scenario, the system might give continu-
ous feedback (such as acknowledgements and
clarification requests) as the user is reading the

forty five

forty five

four t1

forty
four forty

forty five

forty five

t2

t3

t4

time left buffer processor right buffer

four

IU2

left buffer

processor right buffer

right buffer processor

left buffer

IU1 IU1 IU2
IU3 IU2 IU3

module A

module B

747

sequence. When the system repeats the sequence,
the user is also given the opportunity to give
feedback and make corrections at any time. Ob-
viously, such a dialogue will result in many more
speaker-shifts, which in turn increases the need
for the rapid turn-taking. Thus, while the number
dictation task might appear simple at a first
glance (very limited vocabulary, simple syntax
and semantics), there are several issues – not
typically considered in most dialogue systems –
which an incremental and more human-like dia-
logue system must address.

To explore dialogue phenomena in this do-
main, we gave 8 pairs of subjects the task of
dictating number sequences to each other. The
subjects were sitting in different rooms and used
headsets to communicate. To induce more feed-
back behaviour, noise was randomly inserted in
the utterances from the information giver (as in
the setting used by Schlangen & Fernández
(2007)). The subjects were all speaking German
(their native tongue). The recorded dialogues
were then transcribed and annotated. The ob-
served dialogue strategies directly influenced the
design of our system (see below). Table 1 shows
an example of a dialogue between a user and the
system and illustrates some of the phenomena we
intended to model.

U.01 two five three -
S.02 okay
U.03 one forty, five -
S.04 sorry, do you mean one and then forty and

then five?
U.05 no, one forty five
S.06 okay, one forty five
U.07 yeah, and six eight four -
S.08 okay
U.09 seven twelve nine.
S.10 so, from the start, two five three -
U.11 yeah
S.12 one forty five -
S.13 six six four -
U.14 no, six eight four
S.15 okay, six eight four -
S.16 and then seven twelve nine.
U.17 that’s right

Table 1: An example dialogue between a user and
the NUMBERS system.

Just like in this example, a common strategy

for the subjects was to first let the information
giver read the number sequence and then switch
roles and let the information follower repeat it.
Instead of reading out the whole number se-
quence at once, subjects tended to package

pieces of information into what Clark (1996)
refers to as installments (in this case small
groups of numbers). After each installment, the
other speaker may react by giving an acknowl-
edgement (as in S.02) a clarification request (as
in S.04), a correction (as in U.14), or do nothing
(as after S.12).

As there are a lot of speaker shifts, there needs
to be a mechanism for rapid turn taking. In the
example above, the system must recognize that
the last digit in U.01, U.03, U.05 and U.07 ends
an installment and calls for a reaction, while the
last digit in U.09 ends the whole sequence. One
information source that has been observed to be
useful for this is prosody (Koiso et al., 1998).
When analysing the recorded dialogues, it
seemed like mid-sequence installments most
often ended with a prolonged duration and a
rising pitch, while end-sequence installments
most often ended with a shorter duration and a
falling pitch. How prosody is used by the
NUMBERS system for this classification is de-
scribed in section 4.2.

4 The NUMBERS system components

The NUMBERS system has been implemented
using the HIGGINS spoken dialogue system
framework (Skantze, 2007). All modules have
been adapted and extended to allow incremental
processing. It took us roughly 6 months to im-
plement the changes described here to a fully
working baseline system. Figure 3 shows the
architecture of the system2.

Figure 3: The system architecture.

CA = communicative act.

This is pretty much a standard dialogue system
layout, with some exceptions that will be dis-
cussed below. Most notably perhaps is that dia-
logue management is divided into a discourse
modelling module and an action manager. As can

2 A video showing an example run of the system has been
uploaded to
http://www.youtube.com/watch?v=_rDkb1K1si8

Action
Manager

Discourse
modeller

ASR

Semantic
parser

TTS Audio

CAs

Audio

CAs +
Words

Words +
Prosody

CAs +
Entities

CAs +
Words

748

be seen in the figure, the discourse modeller also
receives information about what the system itself
says. The modules run asynchronously in sepa-
rate processes and communicate by sending
XML messages containing the IUs over sockets.

We will now characterize each system module
by what kind of IUs they consume and produce,
as well as the criteria for committing to an IU.

4.1 Speech recognition
The automatic speech recognition module (ASR)
is based on the Sphinx 4 system (Lamere et al.,
2003). The Sphinx system is capable of incre-
mental processing, but we have added support
for producing incremental results that are com-
patible with the HIGGINS framework. We have
also added prosodic analysis to the system, as
described in 4.2. For the NUMBERS domain, we
use a very limited context-free grammar accept-
ing number words as well as some expressions
for feedback and meta-communication.

An illustration of the module buffers is shown
in Figure 2 above. The module consumes audio
frames (each 100 msec) from the LB and pro-
duces words with prosodic features in the RB.
The RB is updated every time the sequence of
top word hypotheses in the processing windows
changes. After 2 seconds of silence has been
detected, the words produced so far are commit-
ted and the speech recognition search space is
cleared. Note that this does not mean that other
components have to wait for this amount of si-
lence to pass before starting to process or that the
system cannot respond until then – incremental
results are produced as soon as the ASR deter-
mines that a word has ended.

4.2 Prosodic analysis
We implemented a simple form of prosodic
analysis as a data processor in the Sphinx fron-
tend. Incremental F0-extraction is done by first
finding pitch candidates (on the semitone scale)
for each audio frame using the SMDSF algo-
rithm (Liu et al., 2005). An optimal path between
the candidates is searched for, using dynamic
programming (maximising candidate confidence
scores and minimising F0 shifts). After this, me-
dian smoothing is applied, using a window of 5
audio frames.

In order for this sequence of F0 values to be
useful, it needs to be parameterized. To find out
whether pitch and duration could be used for the
distinction between mid-sequence installments
and end-sequence installments, we did a machine
learning experiment on the installment-ending

digits in our collected data. There were roughly
an equal amount of both types, giving a majority
class baseline of 50.9%.

As features we calculated a delta pitch pa-
rameter for each word by computing the sum of
all F0 shifts (negative or positive) in the pitch
sequence. (Shifts larger than a certain threshold
(100 cents) were excluded from the summariza-
tion, in order to sort out artefacts.) A duration
parameter was derived by calculating the sum of
the phoneme lengths in the word, divided by the
sum of the average lengths of these phonemes in
the whole data set. Both of these parameters
were tested as predictors separately and in com-
bination, using the Weka Data Mining Software
(Witten & Frank, 2005). The best results were
obtained with a J.48 decision tree, and are shown
in Table 2.

Baseline 50.9%
Pitch 81.2%
Duration 62.4%
Duration + Pitch 80.8%

Table 2: The results of the installment classifica-
tion (accuracy).

 As the table shows, the best predictor was

simply to compare the delta pitch parameter
against an optimal threshold. While the perform-
ance of 80.8% is significantly above baseline, it
could certainly be better. We do not know yet
whether the sub-optimal performance is due to
the fact that the speakers did not always use
these prosodic cues, or whether there is room for
improvement in the pitch extraction and parame-
terization.

Every time the RB of the ASR is updated, the
delta pitch parameter is computed for each word
and the derived threshold is used to determine a
pitch slope class (rising/falling) for the word.
(Note that there is no class for a flat pitch. This
class is not really needed here, since the digits
within installments are followed by no or only
very short pauses.) The strategy followed by the
system then is this: when a digit with a rising
pitch is detected, the system plans to immedi-
ately give a mid-sequence reaction utterance, and
does so if indeed no more words are received. If
a digit with a falling pitch is detected, the system
plans an end-of-sequence utterance, but waits a
little bit longer before producing it, to see if there
really are no more words coming in. In other
words, the system bases its turn-taking decisions
on a combination of ASR, prosody and silence-
thresholds, where the length of the threshold

749

differs for different prosodic signals, and where
reactions are planned already during the silence.
(This is in contrast to Raux & Eskenazi (2008),
where context-dependent thresholds are used as
well, but only simple end-pointing is performed.)

The use of prosodic analysis in combination
with incremental processing allows the
NUMBERS system to give feedback after mid-
sequence installments in about 200 ms. This
should be compared with most dialogue systems
which first use a silence threshold of about 750-
1500 msec, after which each module must proc-
ess the utterance.

4.3 Semantic parsing
For semantic parsing, the incremental processing
in the HIGGINS module PICKERING (Skantze &
Edlund, 2004) has been extended. PICKERING is
based on a modified chart parser which adds
automatic relaxations to the CFG rules for ro-
bustness, and produces semantic interpretations
in the form of concept trees. It can also use fea-
tures that are attached to incoming words, such
as prosody and timestamps. For example, the
number groups in U.03 and U.05 in Table 1 ren-
der different parses due to the pause lengths be-
tween the words.

The task of PICKERING in the NUMBERS do-
main is very limited. Essentially, it identifies
communicative acts (CAs), such as number in-
stallments. The only slightly more complex pars-
ing is that of larger numbers such as “twenty
four”. There are also cases of “syntactic ambigu-
ity”, as illustrated in U.03 in the dialogue exam-
ple above ("forty five" as "45" or "40 5"). In the
NUMBERS system, only 1-best hypotheses are
communicated between the modules, but
PICKERING can still assign a lower parsing confi-
dence score to an ambiguous interpretation,
which triggers a clarification request in S.04.

Figure 4 show a very simple example of the
incremental processing in PICKERING. The LB
contains words with prosodic features produced
by the ASR (compare with Figure 2 above). The
RB consists of the CAs that are identified. Each
time a word is added to the chart, PICKERING
continues to build the chart and then searches for
an optimal sequence of CAs in the chart, allow-
ing non-matching words in between. To handle
revision, a copy of the chart is saved after each
word has been added.

Figure 4: Incremental parsing. There is a jump in time

between t4 and t5.

As can be seen at time-point t4, even if all
words that a CA is based on are committed, the
parser does not automatically commit the CA.
This is because later words may still cause a
revision of the complex output IU that has been
built. As a heuristic, PICKERING instead waits
until a CA is followed by three words that are not
part of it until it commits, as shown at time-point
t5. After a CA has been committed, the words
involved may be cleared from the chart. This
way, PICKERING parses a “moving window” of
words.

4.4 Discourse modelling
For discourse modelling, the HIGGINS module
GALATEA (Skantze, 2008) has been extended to
operate incrementally. The task of GALATEA is
to interpret utterances in their context by trans-
forming ellipses into full propositions, indentify
discourse entities, resolve anaphora and keep
track of the grounding status of concepts (their
confidence score and when they have been
grounded in the discourse). As can be seen in
Figure 3, GALATEA models both utterances from
the user as well as the system. This makes it
possible for the system to monitor its own utter-
ances and relate them to the user’s utterances, by
using timestamps produced by the ASR and the
speech synthesiser.

In the LB GALATEA consumes CAs from both
the user (partially committed, as seen in Figure
4) and the system (always committed, see 4.6).
In the RB GALATEA produces an incremental
discourse model. This model contains a list of
resolved communicative acts and list of resolved
discourse entities. This model is then consulted
by an action manager which decides what the
system should do next. The discourse model is

40

forty

forty five

forty five

forty

forty five

forty five

40

45

45

40

45

45

three 62 3 45
forty five sixty two three

62 3 45

t1

t2

t3

t4

time

four
four

4 4

t5

left buffer processor right buffer

4 four

750

committed up to the point of the earliest non-
committed incoming CA. In the NUMBERS do-
main, the discourse entities are the number in-
stallments.

4.5 Action management
Based on the discourse model (from the LB), the
action manager (AM) generates system actions
(CAs) in semantic form (for GALATEA) with an
attached surface form (for the TTS), and puts
them on the RB. (In future extensions of the sys-
tem, we will add an additional generation module
that generates the surface form from the semantic
form.) In the NUMBERS system, possible system
actions are acknowledgements, clarification re-
quests and repetitions of the number sequence.
The choice of actions to perform is based on the
grounding status of the concepts (which is repre-
sented in the discourse model). For example, if
the system has already clarified the first part of
the number sequence due to an ambiguity, it does
not need to repeat this part of the sequence again.

The AM also attaches a desired timing to the
produced CA, relative to the end time of last user
utterance. For example, if a number group with a
final rising pitch is detected, the AM may tell the
TTS to execute the CA immediately after the
user has stopped speaking. If there is a falling
pitch, it may tell the TTS to wait until 500 msec
of silence has been detected from the user before
executing the action. If the discourse model gets
updated during this time, the AM may revoke
previous CAs and replace them with new ones.

4.6 Speech synthesis
A diphone MBROLA text-to-speech synthesiser
(TTS) is used in the system (Dutoit et al., 1996),
and a wrapper for handling incremental process-
ing has been implemented. The TTS consumes
words linked to CAs from the LB, as produced
by the AM. As described above, each CA has a
timestamp. The TTS places them on a queue, and
prepares to synthesise and start sending the audio
to the speakers. When the system utterance has
been played, the corresponding semantic con-
cepts for the CA are sent to GALATEA. If the
TTS is interrupted, the semantic fragments of the
CA that corresponds to the words that were spo-
ken are sent. This way, GALATEA can monitor
what the system actually says and provide the
AM with this information. Since the TTS only
sends (parts of) the CAs that have actually been
spoken, these are always marked as committed.

There is a direct link from the ASR to the TTS
as well (not shown in Figure 3), informing the

TTS of start-of-speech and end-of-speech events.
As soon as a start-of-speech event is detected,
the TTS stops speaking. If the TTS does not re-
ceive any new CAs from the AM as a conse-
quence of what the user said, it automatically
resumes from the point of interruption. (This
implements a "reactive behaviour" in the sense of
(Brooks, 1991), which is outside of the control of
the AM.)

An example of this is shown in Table 1. After
U.09, the AM decides to repeat the whole num-
ber sequence and sends a series of CAs to the
TTS for doing this. After S.10, the user gives
feedback in the form of an acknowledgement
(U.11). This causes the TTS to make a pause.
When GALATEA receives the user feedback, it
uses the time-stamps to find out that the feedback
is related to the number group in S.10 and the
grounding status for this group is boosted. When
the AM receives the updated discourse model, it
decides that this does not call for any revision to
the already planned series of actions. Since the
TTS does not receive any revisions, it resumes
the repetition of the number sequence in S.12.

The TTS module is fully incremental in that it
can stop and resume speaking in the middle of an
utterance, revise planned output, and can inform
other components of what (parts of utterances)
has been spoken. However, the actual text-to-
speech processing is done before the utterance
starts and not yet incrementally as the utterance
is spoken, which could further improve the effi-
ciency of the system. This is a topic for future
research, together with the generation of hidden
and overt repair as discussed by Kilger & Finkler
(1995).

5 Evaluation

It is difficult to evaluate complete dialogue sys-
tems such as the one presented here, since there
are so many different components involved (but
see Möller et al. (2007) for methods used). In our
case, we’re interested in the benefits of a specific
aspect, though, namely incrementality. No
evaluation is needed to confirm that an incre-
mental system such as this allows more flexible
turn-taking and that it can potentially respond
faster – this is so by design. However, we also
want this behaviour to result in an improved user
experience. To test whether we have achieved
this, we implemented for comparison a non-
incremental version of the system, very much
like a standard number dictation dialogue in a
commercial application. In this version, the user

751

is asked to read out the whole number sequence
in one go. After a certain amount of silence, the
system confirms the whole sequence and asks a
yes/no question whether it was correct. If not, the
user has to repeat the whole sequence.

Eight subjects were given the task of using the
two versions of the system to dictate number
sequences (in English) to the system. (The sub-
jects were native speakers of German with a
good command of English.) Half of the subjects
used the incremental version first and the other
half started with the non-incremental version.
They were asked to dictate eight number se-
quences to each version, resulting in 128 dia-
logues. For each sequence, they were given a
time limit of 1 minute. After each sequence, they
were asked whether they had succeeded in dictat-
ing the sequence or not, as well as to mark their
agreement (on a scale from 0-6) with statements
concerning how well they had been understood
by the system, how responsive the system was, if
the system behaved as expected, and how hu-
man-like the conversational partner was. After
using both versions of the system, they were also
asked whether they preferred one of the versions
and to what extent (1 or 2 points, which gives a
maximum score of 16 to any version, when total-
ling all subjects).

There was no significant difference between
the two versions with regard to how many of the
tasks were completed successfully. However, the
incremental version was clearly preferred in the
overall judgement (9 points versus 1). Only one
of the more specific questions yielded any sig-
nificant difference between the versions: the
incremental version was judged to be more hu-
man-like for the successful dialogues (5,2 on
average vs. 4,5; Wilcoxon signed rank test;
p<0.05).

The results from the evaluation are in line with
what could be expected. A non-incremental sys-
tem can be very efficient if the system under-
stands the number sequence the first time, and
the ASR vocabulary is in this case very limited,
which explains why the success-rate was the
same for both systems. However, the incremental
version was experienced as more pleasant and
human-like. One explanation for the better rating
of the incremental version is that the acknowl-
edgements encouraged the subjects to package
the digits into installments, which helped the
system to better read back the sequence using the
same installments.

6 Conclusions and future work

To sum up, we have presented a dialogue system
that through the use of novel techniques (incre-
mental prosodic analysis, reactive connection
between ASR and TTS, fully incremental archi-
tecture) achieves an unprecedented level of reac-
tiveness (from a minimum latency of 750ms, as
typically used in dialogue systems, down to one
of 200ms), and is consequently evaluated as
more natural than more typical setups by human
users. While the domain we've used is relatively
simple, there are no principled reasons why the
techniques introduced here should not scale up.

In future user studies, we will explore which
factors contribute to the improved experience of
using an incremental system. Such factors may
include improved responsiveness, better install-
ment packaging, and more elaborate feedback. It
would also be interesting to find out when rapid
responses are more important (e.g. acknowl-
edgements), and when they may be less impor-
tant (e.g., answers to task-related questions).

We are currently investigating the transfer of
the prosodic analysis to utterances in a larger
domain, where similarly instructions by the user
can be given in installments. But even within the
currently used micro-domain, there are interest-
ing issues still to be explored. In future versions
of the system, we will let the modules pass paral-
lel hypotheses and also improve the incremental
generation and synthesis. Since the vocabulary is
very limited, it would also be possible to use a
limited domain synthesis (Black & Lenzo, 2000),
and explore how the nuances of different back-
channels might affect the dialogue. Another chal-
lenge that can be researched within this micro-
domain is how to use the prosodic analysis for
other tasks, such as distinguishing correction
from dictation (for example if U.14 in Table 1
would not begin with a “no”). In general, we
think that this paper shows that narrowing down
the domain while shifting the focus to the model-
ling of more low-level, conversational dialogue
phenomena is a fruitful path.

Acknowledgements
This work was funded by a DFG grant in the
Emmy Noether programme. We would also like
to thank Timo Baumann and Michaela Atterer
for their contributions to the project, as well as
Anna Iwanow and Angelika Adam for collecting
and transcribing the data used in this paper.

752

References
Aist, G., Allen, J. F., Campana, E., Galescu, L.,

Gómez Gallo, C. A., Stoness, S. C., Swift, M., &
Tanenhaus, M. (2006). Software Architectures for
Incremental Understanding of Human Speech. In
Proceedings of Interspeech (pp. 1922-1925). Pitts-
burgh PA, USA.

Allen, J. F., Ferguson, G., & Stent, A. (2001). An
architecture for more realistic conversational sys-
tems. In Proceedings of the 6th international con-
ference on Intelligent user interfaces (pp. 1-8).

Black, A., & Lenzo, K. (2000). Limited domain syn-
thesis. In Proceedings of ICSLP (pp. 410-415).
Beijing, China.

Brooks, R. A. (1991). Intelligence without representa-
tion. Artificial Intelligence, 47, 139-159.

Clark, H. H. (1996). Using language. Cambridge,
UK: Cambridge University Press.

Dohsaka, K., & Shimazu, A. (1997). System architec-
ture for spoken utterance production in collabora-
tive dialogue. In Working Notes of IJCAI 1997
Workshop on Collaboration, Cooperation and
Conflict in Dialogue Systems.

Dutoit, T., Pagel, V., Pierret, N., Bataille, F., & Vre-
ken, O. v. d. (1996). The MBROLA project: To-
wards a set of high-quality speech synthesizers free
of use for non-commercial purposes. In Proceed-
ings of ICSLIP '96 (pp. 1393-1396).

Edlund, J., Gustafson, J., Heldner, M., & Hjalmars-
son, A. (2008). Towards human-like spoken dialo-
gue systems. Speech Communication, 50(8-9), 630-
645.

Ferrer, L., Shriberg, E., & Stolcke, A. (2002). Is the
speaker done yet? Faster and more accurate end-of
utterance detection using prosody. In Proceedings
of ICSLP (pp. 2061-2064).

Kilger, A., & Finkler, W. (1995). Incremental Gener-
ation for Real-Time Applications. Technical Report
RR-95-11, German Research Center for Artificial
Intelligence.

Koiso, H., Horiuchi, Y., Tutiya, S., Ichikawa, A., &
Den, Y. (1998). An analysis of turn-taking and
backchannels based on prosodic and syntactic fea-
tures in Japanese Map Task dialogs. Language and
Speech, 41, 295-321.

Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R.,
Walker, W., Warmuth, M., & Wolf, P. (2003). The
CMU SPHINX-4 speech recognition system.. In
Proceedings of the IEEE Intl. Conf. on Acoustics,
Speech and Signal Processing. Hong Kong.

Levelt, W. J. M. (1989). Speaking: From Intention to
Articulation. Cambridge, Mass., USA: MIT Press.

Liu, J., Zheng, T. F., Deng, J., & Wu, W. (2005).
Real-time pitch tracking based on combined
SMDSF. In Proceedings of Interspeech (pp. 301-
304). Lisbon, Portugal.

Möller, S., Smeele, P., Boland, H., & Krebber, J.
(2007). Evaluating spoken dialogue systems ac-

cording to de-facto standards: A case study. Com-
puter Speech & Language, 21(1), 26-53.

Raux, A., & Eskenazi, M. (2007). A multi-Layer
architecture for semi-synchronous event-driven di-
alogue Management. In ASRU 2007. Kyoto, Ja-
pan..

Raux, A., & Eskenazi, M. (2008). Optimizing end-
pointing thresholds using dialogue features in a
spoken dialogue system. In Proceedings of SIGdial
2008. Columbus, OH, USA.

Sacks, H., Schwegloff, E., & Jefferson, G. (1974). A
simplest systematics for the organization of turn-
taking for conversation. Language, 50, 696-735.

Schlangen, D., & Fernández, R. (2007). Speaking
through a noisy channel: experiments on inducing
clarification behaviour in human-human dialogue.
In Proceedings of Interspeech 2007. Antwerp, Bel-
gium.

Schlangen, D., & Skantze, G. (2009). A general, ab-
stract model of incremental dialogue processing. In
Proceedings of the 12th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (EACL-09). Athens, Greece.

Skantze, G., & Edlund, J. (2004). Robust interpreta-
tion in the Higgins spoken dialogue system. In
Proceedings of ISCA Tutorial and Research Work-
shop (ITRW) on Robustness Issues in Conversa-
tional Interaction. Norwich, UK.

Skantze, G. (2007). Error Handling in Spoken Dialo-
gue Systems - Managing Uncertainty, Grounding
and Miscommunication. Doctoral dissertation,
KTH, Department of Speech, Music and Hearing.

Skantze, G. (2008). Galatea: A discourse modeller
supporting concept-level error handling in spoken
dialogue systems. In Dybkjær, L., & Minker, W.
(Eds.), Recent Trends in Discourse and Dialogue.
Springer.

Stoness, S. C., Tetreault, J., & Allen, J. (2004). In-
cremental parsing with reference interaction. In
Proceedings of the ACL Workshop on Incremental
Parsing (pp. 18-25).

Tanenhaus, M. K., & Brown-Schmidt, S. (2008).
Language processing in the natural world. In
Moore, B. C. M., Tyler, L. K., & Marslen-Wilson,
W. D. (Eds.), The perception of speech: from
sound to meaning (pp. 1105-1122).

Wirén, M. (1992). Studies in Incremental Natural
Language Analysis. Doctoral dissertation,
Linköping University, Linköping, Sweden.

Witten, I. H., & Frank, E. (2005). Data Mining: Prac-
tical machine learning tools and techniques. San
Francisco: Morgan Kaufmann.

753

