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Abstract 

This paper describes a fully incremental dia-
logue system that can engage in dialogues 
in a simple domain, number dictation. Be-
cause it uses incremental speech recognition 
and prosodic analysis, the system can give 
rapid feedback as the user is speaking, with 
a very short latency of around 200ms.  Be-
cause it uses incremental speech synthesis 
and self-monitoring, the system can react to 
feedback from the user as the system is 
speaking. A comparative evaluation shows 
that naïve users preferred this system over a 
non-incremental version, and that it was 
perceived as more human-like. 1 

1 Introduction 

A traditional simplifying assumption for spoken 
dialogue systems is that the dialogue proceeds 
with strict turn-taking between user and system. 
The minimal unit of processing in such systems 
is the utterance, which is processed in whole by 
each module of the system before it is handed on 
to the next. When the system is speaking an ut-
terance, it assumes that the user will wait for it to 
end before responding. (Some systems accept 
barge-ins, but then treat the interrupted utterance 
as basically unsaid.) 

Obviously, this is not how natural human-
human dialogue proceeds. Humans understand 
and produce language incrementally – they use 
multiple knowledge sources to determine when it 
is appropriate to speak, they give and receive 
backchannels in the middle of utterances, they 
start to speak before knowing exactly what to 
say, and they incrementally monitor the listener’s 
reactions to what they say (Clark, 1996).  

                                                           
1 The work reported in this paper was done while the first 
author was at the University of Potsdam. 

This paper presents a dialogue system, called 
NUMBERS, in which all components operate in-
crementally. We had two aims: First, to explore 
technical questions such as how the components 
of a modularized dialogue system should be ar-
ranged and made to interoperate to support in-
cremental processing, and which requirements 
incremental processing puts on dialogue system 
components (e.g., speech recognition, prosodic 
analysis, parsing, discourse modelling, action 
selection and speech synthesis).  Second, to in-
vestigate whether incremental processing can 
help us to better model certain aspects of human 
behaviour in dialogue systems – especially turn-
taking and feedback – and whether this improves 
the user’s experience of using such a system.   

2 Incremental dialogue processing  

All dialogue systems are ‘incremental’, in some 
sense – they proceed in steps through the ex-
change of ‘utterances’. However, incremental 
processing typically means more than this; a 
common requirement is that processing starts 
before the input is complete and that the first 
output increments are produced as soon as possi-
ble (e.g., Kilger & Finkler, 1995). Incremental 
modules hence are those where “Each processing 
component will be triggered into activity by a 
minimal amount of its characteristic input” 
(Levelt, 1989). If we assume that the ‘character-
istic input’ of a dialogue system is the utterance, 
this principle demands that ‘minimal amounts’ of 
an utterance already trigger activity. It should be 
noted though, that there is a trade-off between 
responsiveness and output quality, and that an 
incremental process therefore should produce 
output only as soon as it is possible to reach a 
desired output quality criterion.  

2.1 Motivations & related work 
The claim that humans do not understand and 
produce speech in utterance-sized chunks, but 
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rather incrementally, can be supported by an 
impressive amount of psycholinguistic literature 
on the subject (e.g., Tanenhaus & Brown-
Schmidt, 2008; Levelt, 1989). However, when it 
comes to spoken dialogue systems, the dominant 
minimal unit of processing has been the utter-
ance. Moreover, traditional systems follow a 
very strict sequential processing order of utter-
ances – interpretation, dialogue management, 
generation – and there is most often no monitor-
ing of whether (parts of) the generated message 
is successfully delivered.  

Allen et al. (2001) discuss some of the short-
comings of these assumptions when modelling 
more conversational human-like dialogue. First, 
they fail to account for the frequently found mid-
utterance reactions and feedback (in the form of 
acknowledgements, repetition of fragments or 
clarification requests). Second, people often 
seem to start to speak before knowing exactly 
what to say next (possibly to grab the turn), thus 
producing the utterance incrementally. Third, 
when a speaker is interrupted or receives feed-
back in the middle of an utterance, he is able to 
continue the utterance from the point where he 
was interrupted.  

Since a non-incremental system needs to proc-
ess the whole user utterance using one module at 
a time, it cannot utilise any higher level informa-
tion for deciding when the user’s turn or utter-
ance is finished, and typically has to rely only on 
silence detection and a time-out. Silence, how-
ever, is not a good indicator: sometimes there is 
silence but no turn-change is intended (e.g., hesi-
tations), sometimes there isn’t silence, but the 
turn changes (Sacks et al., 1974). Speakers ap-
pear to use other knowledge sources, such as 
prosody, syntax and semantics to detect or even 
project the end of the utterance. Attempts have 
been made to incorporate such knowledge 
sources for turn-taking decisions in spoken dia-
logue systems (e.g., Ferrer et al., 2002; Raux & 
Eskenazi, 2008). To do so, incremental dialogue 
processing is clearly needed. 

Incremental processing can also lead to better 
use of resources, since later modules can start to 
work on partial results and do not have to wait 
until earlier modules have completed processing 
the whole utterance. For example, while the 
speech recogniser starts to identify words, the 
parser can already add these to the chart. Later 
modules can also assist in the processing and for 
example resolve ambiguities as they come up. 
Stoness et al. (2004) shows how a reference reso-
lution module can help an incremental parser 

with NP suitability judgements. Similarly, Aist et 
al. (2006) shows how a VP advisor could help an 
incremental parser.  

On the output side, an incremental dialogue 
system could monitor what is actually happening 
to the utterance it produces. As discussed by 
Raux & Eskenazi (2007), most dialogue manag-
ers operate asynchronously from the output com-
ponents, which may lead to problems if the 
dialogue manager produces several actions and 
the user responds to one of them. If the input 
components do not have any information about 
the timing of the system output, they cannot re-
late them to the user’s response. This is even 
more problematic if the user reacts (for example 
with a backchannel) in the middle of system 
utterances. The system must then relate the 
user’s response to the parts of its planned output 
it has managed to realise, but also be able to stop 
speaking and possibly continue the interrupted 
utterance appropriately. A solution for handling 
mid-utterance responses from the user is pro-
posed by Dohsaka & Shimazu (1997). For in-
cremental generation and synthesis, the output 
components must also cope with the problem of 
revision (discussed in more detail below), which 
may for example lead to the need for the genera-
tion of speech repairs, as discussed by Kilger & 
Finkler (1995). 

As the survey above shows, a number of stud-
ies have been done on incrementality in different 
areas of language processing. There are, how-
ever, to our knowledge no studies on how the 
various components could or should be inte-
grated into a complete, fully incremental dia-
logue system, and how such a system might be 
perceived by naïve users, compared to a non-
incremental system. This we provide here. 

2.2 A general, abstract model 
The NUMBERS system presented in this paper can 
be seen as a specific instance (with some simpli-
fying assumptions) of a more general, abstract 
model that we have developed (Schlangen & 
Skantze, 2009). We will here only briefly de-
scribe the parts of the general model that are 
relevant for the exposition of our system. 

We model the dialogue processing system as a 
collection of connected processing modules. The 
smallest unit of information that is communi-
cated along the connections is called the incre-
mental unit (IU), the unit of the “minimal 
amount of characteristic input”. Depending on 
what the module does, IUs may be audio frames, 
words, syntactic phrases, communicative acts, 
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etc. The processing module itself is modelled as 
consisting of a Left Buffer (LB), the Processor 
proper, and a Right Buffer (RB). An example of 
two connected modules is shown in Figure 1. As 
IU1 enters the LB of module A, it may be con-
sumed by the processor. The processor may then 
produce new IUs, which are posted on the RB 
(IU2 in the example). As the example shows, the 
modules in the system are connected so that an 
IU posted on the RB in one module may be con-
sumed in the LB of another module. One RB 
may of course be connected to many other LB’s, 
and vice versa, allowing a range of different 
network topologies.    
 

 
Figure 1: Two connected modules. 

 
In the NUMBERS system, information is only 

allowed to flow from left to right, which means 
that the LB may be regarded as the input buffer 
and the RB as the output buffer. However, in the 
general model, information may flow in both 
directions.  

A more concrete example is shown in Figure 
2, which illustrates a module that does incre-
mental speech recognition. The IUs consumed 
from the LB are audio frames, and the IUs posted 
in the RB are the words that are recognised.  
 

 
Figure 2: Speech recognition as an example of incre-

mental processing. 
 

We identify three different generic module 
operations on IUs: update, purge and commit. 
First, as an IU is added to the LB, the processor 
needs to update its internal state. In the example 
above, the speech recogniser has to continuously 
add incoming audio frames to its internal state, 

and as soon as the recogniser receives enough 
audio frames to decide that the word “four” is a 
good-enough candidate, the IU holding this word 
will be put on the RB (time-point t1). If a proces-
sor only expects IUs that extend the rightmost IU 
currently produced, we can follow Wirén (1992) 
in saying that it is only left-to-right incremental.  
A fully incremental system (which we aim at 
here), on the other hand, also allows insertions 
and/or revisions.  

An example of revision is illustrated at time-
point t2 in Figure 2.  As more audio frames are 
consumed by the recogniser, the word “four” is 
no longer the best candidate for this stretch of 
audio. Thus, the module must now revoke the IU 
holding the word “four” (marked with a dotted 
outline) and add a new IU for the word “forty”. 
All other modules consuming these IUs must 
now purge them from their own states and pos-
sibly revoke other IUs. By allowing revision, a 
module may produce tentative results and thus 
make the system more responsive. 

As more audio frames are consumed in the ex-
ample above, a new word “five” is identified and 
added to the RB (time-point t3). At time-point t4, 
no more words are identified, and the module 
may decide to commit to the IUs that it has pro-
duced (marked with a darker shade). A commit-
ted IU is guaranteed to not being revoked later, 
and can hence potentially be removed from the 
processing window of later modules, freeing up 
resources. 

3 Number dictation: a micro-domain 

Building a fully incremental system with a be-
haviour more closely resembling that of human 
dialogue participants raises a series of new chal-
lenges. Therefore, in order to make the task more 
feasible, we have chosen a very limited domain – 
what might be called a micro-domain (cf. Edlund 
et al., 2008): the dictation of number sequences. 
In this scenario, the user dictates a sequence of 
numbers (such as a telephone number or a credit 
card number) to the dialogue system. This is a 
very common situation in commercial telephone-
based dialogue systems, which however operate 
in a non-incremental manner: The user is first 
asked to read out the whole number sequence, 
which the system then confirms. Should the rec-
ognition be incorrect, the user has to repeat the 
whole sequence again. In an incremental version 
of this scenario, the system might give continu-
ous feedback (such as acknowledgements and 
clarification requests) as the user is reading the 

forty five 
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four t1

forty 
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t3
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time left buffer processor right buffer 
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sequence. When the system repeats the sequence, 
the user is also given the opportunity to give 
feedback and make corrections at any time. Ob-
viously, such a dialogue will result in many more 
speaker-shifts, which in turn increases the need 
for the rapid turn-taking. Thus, while the number 
dictation task might appear simple at a first 
glance (very limited vocabulary, simple syntax 
and semantics), there are several issues – not 
typically considered in most dialogue systems – 
which an incremental and more human-like dia-
logue system must address. 

To explore dialogue phenomena in this do-
main, we gave 8 pairs of subjects the task of 
dictating number sequences to each other. The 
subjects were sitting in different rooms and used 
headsets to communicate. To induce more feed-
back behaviour, noise was randomly inserted in 
the utterances from the information giver (as in 
the setting used by Schlangen & Fernández 
(2007)). The subjects were all speaking German 
(their native tongue). The recorded dialogues 
were then transcribed and annotated. The ob-
served dialogue strategies directly influenced the 
design of our system (see below). Table 1 shows 
an example of a dialogue between a user and the 
system and illustrates some of the phenomena we 
intended to model. 

 
U.01 two five three - 
S.02 okay 
U.03 one forty, five - 
S.04 sorry, do you mean one and then forty and 

then five? 
U.05 no, one forty five 
S.06 okay, one forty five 
U.07 yeah, and six eight four - 
S.08 okay 
U.09 seven twelve nine. 
S.10 so, from the start, two five three - 
U.11 yeah 
S.12 one forty five - 
S.13 six six four - 
U.14 no, six eight four 
S.15 okay, six eight four - 
S.16 and then seven twelve nine. 
U.17 that’s right 

Table 1: An example dialogue between a user and 
the NUMBERS system. 

 
Just like in this example, a common strategy 

for the subjects was to first let the information 
giver read the number sequence and then switch 
roles and let the information follower repeat it. 
Instead of reading out the whole number se-
quence at once, subjects tended to package 

pieces of information into what Clark (1996) 
refers to as installments (in this case small 
groups of numbers). After each installment, the 
other speaker may react by giving an acknowl-
edgement (as in S.02) a clarification request (as 
in S.04), a correction (as in U.14), or do nothing 
(as after S.12).  

As there are a lot of speaker shifts, there needs 
to be a mechanism for rapid turn taking. In the 
example above, the system must recognize that 
the last digit in U.01, U.03, U.05 and U.07 ends 
an installment and calls for a reaction, while the 
last digit in U.09 ends the whole sequence. One 
information source that has been observed to be 
useful for this is prosody (Koiso et al., 1998). 
When analysing the recorded dialogues, it 
seemed like mid-sequence installments most 
often ended with a prolonged duration and a 
rising pitch, while end-sequence installments 
most often ended with a shorter duration and a 
falling pitch. How prosody is used by the 
NUMBERS system for this classification is de-
scribed in section 4.2.  

4 The NUMBERS system components 

The NUMBERS system has been implemented 
using the HIGGINS spoken dialogue system 
framework (Skantze, 2007). All modules have 
been adapted and extended to allow incremental 
processing. It took us roughly 6 months to im-
plement the changes described here to a fully 
working baseline system. Figure 3 shows the 
architecture of the system2.  
 

  
Figure 3: The system architecture.  

CA = communicative act. 
 

This is pretty much a standard dialogue system 
layout, with some exceptions that will be dis-
cussed below. Most notably perhaps is that dia-
logue management is divided into a discourse 
modelling module and an action manager. As can 

                                                           
2 A video showing an example run of the system has been 
uploaded to 
http://www.youtube.com/watch?v=_rDkb1K1si8 
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be seen in the figure, the discourse modeller also 
receives information about what the system itself 
says. The modules run asynchronously in sepa-
rate processes and communicate by sending 
XML messages containing the IUs over sockets.  

We will now characterize each system module 
by what kind of IUs they consume and produce, 
as well as the criteria for committing to an IU.  

4.1 Speech recognition  
The automatic speech recognition module (ASR) 
is based on the Sphinx 4 system (Lamere et al., 
2003). The Sphinx system is capable of incre-
mental processing, but we have added support 
for producing incremental results that are com-
patible with the HIGGINS framework. We have 
also added prosodic analysis to the system, as 
described in 4.2. For the NUMBERS domain, we 
use a very limited context-free grammar accept-
ing number words as well as some expressions 
for feedback and meta-communication.  

An illustration of the module buffers is shown 
in Figure 2 above. The module consumes audio 
frames (each 100 msec) from the LB and pro-
duces words with prosodic features in the RB. 
The RB is updated every time the sequence of 
top word hypotheses in the processing windows 
changes. After 2 seconds of silence has been 
detected, the words produced so far are commit-
ted and the speech recognition search space is 
cleared. Note that this does not mean that other 
components have to wait for this amount of si-
lence to pass before starting to process or that the 
system cannot respond until then – incremental 
results are produced as soon as the ASR deter-
mines that a word has ended.  

4.2 Prosodic analysis 
We implemented a simple form of prosodic 
analysis as a data processor in the Sphinx fron-
tend. Incremental F0-extraction is done by first 
finding pitch candidates (on the semitone scale) 
for each audio frame using the SMDSF algo-
rithm (Liu et al., 2005). An optimal path between 
the candidates is searched for, using dynamic 
programming (maximising candidate confidence 
scores and minimising F0 shifts). After this, me-
dian smoothing is applied, using a window of 5 
audio frames.  

In order for this sequence of F0 values to be 
useful, it needs to be parameterized. To find out 
whether pitch and duration could be used for the 
distinction between mid-sequence installments 
and end-sequence installments, we did a machine 
learning experiment on the installment-ending 

digits in our collected data. There were roughly 
an equal amount of both types, giving a majority 
class baseline of 50.9%. 

As features we calculated a delta pitch pa-
rameter for each word by computing the sum of 
all F0 shifts (negative or positive) in the pitch 
sequence. (Shifts larger than a certain threshold 
(100 cents) were excluded from the summariza-
tion, in order to sort out artefacts.) A duration 
parameter was derived by calculating the sum of 
the phoneme lengths in the word, divided by the 
sum of the average lengths of these phonemes in 
the whole data set. Both of these parameters 
were tested as predictors separately and in com-
bination, using the Weka Data Mining Software 
(Witten & Frank, 2005). The best results were 
obtained with a J.48 decision tree, and are shown 
in Table 2. 

 
Baseline 50.9% 
Pitch 81.2% 
Duration 62.4% 
Duration + Pitch 80.8% 

Table 2: The results of the installment classifica-
tion (accuracy). 
 
 As the table shows, the best predictor was 

simply to compare the delta pitch parameter 
against an optimal threshold. While the perform-
ance of 80.8% is significantly above baseline, it 
could certainly be better. We do not know yet 
whether the sub-optimal performance is due to 
the fact that the speakers did not always use 
these prosodic cues, or whether there is room for 
improvement in the pitch extraction and parame-
terization. 

Every time the RB of the ASR is updated, the 
delta pitch parameter is computed for each word 
and the derived threshold is used to determine a 
pitch slope class (rising/falling) for the word. 
(Note that there is no class for a flat pitch. This 
class is not really needed here, since the digits 
within installments are followed by no or only 
very short pauses.) The strategy followed by the 
system then is this: when a digit with a rising 
pitch is detected, the system plans to immedi-
ately give a mid-sequence reaction utterance, and 
does so if indeed no more words are received. If 
a digit with a falling pitch is detected, the system 
plans an end-of-sequence utterance, but waits a 
little bit longer before producing it, to see if there 
really are no more words coming in. In other 
words, the system bases its turn-taking decisions 
on a combination of ASR, prosody and silence-
thresholds, where the length of the threshold 
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differs for different prosodic signals, and where 
reactions are planned already during the silence. 
(This is in contrast to Raux & Eskenazi (2008), 
where context-dependent thresholds are used as 
well, but only simple end-pointing is performed.) 

The use of prosodic analysis in combination 
with incremental processing allows the 
NUMBERS system to give feedback after mid-
sequence installments in about 200 ms. This 
should be compared with most dialogue systems 
which first use a silence threshold of about 750-
1500 msec, after which each module must proc-
ess the utterance. 

4.3 Semantic parsing 
For semantic parsing, the incremental processing 
in the HIGGINS module PICKERING (Skantze & 
Edlund, 2004) has been extended. PICKERING is 
based on a modified chart parser which adds 
automatic relaxations to the CFG rules for ro-
bustness, and produces semantic interpretations 
in the form of concept trees. It can also use fea-
tures that are attached to incoming words, such 
as prosody and timestamps. For example, the 
number groups in U.03 and U.05 in Table 1 ren-
der different parses due to the pause lengths be-
tween the words. 

The task of PICKERING in the NUMBERS do-
main is very limited. Essentially, it identifies 
communicative acts (CAs), such as number in-
stallments. The only slightly more complex pars-
ing is that of larger numbers such as “twenty 
four”. There are also cases of “syntactic ambigu-
ity”, as illustrated in U.03 in the dialogue exam-
ple above ("forty five" as "45" or "40 5"). In the 
NUMBERS system, only 1-best hypotheses are 
communicated between the modules, but 
PICKERING can still assign a lower parsing confi-
dence score to an ambiguous interpretation, 
which triggers a clarification request in S.04. 

Figure 4 show a very simple example of the 
incremental processing in PICKERING. The LB 
contains words with prosodic features produced 
by the ASR (compare with Figure 2 above). The 
RB consists of the CAs that are identified. Each 
time a word is added to the chart, PICKERING 
continues to build the chart and then searches for 
an optimal sequence of CAs in the chart, allow-
ing non-matching words in between. To handle 
revision, a copy of the chart is saved after each 
word has been added. 

 

 
Figure 4: Incremental parsing. There is a jump in time 

between t4 and t5. 
 

As can be seen at time-point t4, even if all 
words that a CA is based on are committed, the 
parser does not automatically commit the CA. 
This is because later words may still cause a 
revision of the complex output IU that has been 
built. As a heuristic, PICKERING instead waits 
until a CA is followed by three words that are not 
part of it until it commits, as shown at time-point 
t5. After a CA has been committed, the words 
involved may be cleared from the chart. This 
way, PICKERING parses a “moving window” of 
words.  

4.4 Discourse modelling 
For discourse modelling, the HIGGINS module 
GALATEA (Skantze, 2008) has been extended to 
operate incrementally. The task of GALATEA is 
to interpret utterances in their context by trans-
forming ellipses into full propositions, indentify 
discourse entities, resolve anaphora and keep 
track of the grounding status of concepts (their 
confidence score and when they have been 
grounded in the discourse). As can be seen in 
Figure 3, GALATEA models both utterances from 
the user as well as the system. This makes it 
possible for the system to monitor its own utter-
ances and relate them to the user’s utterances, by 
using timestamps produced by the ASR and the 
speech synthesiser. 

In the LB GALATEA consumes CAs from both 
the user (partially committed, as seen in Figure 
4) and the system (always committed, see 4.6). 
In the RB GALATEA produces an incremental 
discourse model. This model contains a list of 
resolved communicative acts and list of resolved 
discourse entities. This model is then consulted 
by an action manager which decides what the 
system should do next. The discourse model is 

40 
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committed up to the point of the earliest non-
committed incoming CA. In the NUMBERS do-
main, the discourse entities are the number in-
stallments.  

4.5 Action management  
Based on the discourse model (from the LB), the 
action manager (AM) generates system actions 
(CAs) in semantic form (for GALATEA) with an 
attached surface form (for the TTS), and puts 
them on the RB. (In future extensions of the sys-
tem, we will add an additional generation module 
that generates the surface form from the semantic 
form.) In the NUMBERS system, possible system 
actions are acknowledgements, clarification re-
quests and repetitions of the number sequence. 
The choice of actions to perform is based on the 
grounding status of the concepts (which is repre-
sented in the discourse model). For example, if 
the system has already clarified the first part of 
the number sequence due to an ambiguity, it does 
not need to repeat this part of the sequence again. 

The AM also attaches a desired timing to the 
produced CA, relative to the end time of last user 
utterance. For example, if a number group with a 
final rising pitch is detected, the AM may tell the 
TTS to execute the CA immediately after the 
user has stopped speaking. If there is a falling 
pitch, it may tell the TTS to wait until 500 msec 
of silence has been detected from the user before 
executing the action. If the discourse model gets 
updated during this time, the AM may revoke 
previous CAs and replace them with new ones.  

4.6 Speech synthesis 
A diphone MBROLA text-to-speech synthesiser 
(TTS) is used in the system (Dutoit et al., 1996), 
and a wrapper for handling incremental process-
ing has been implemented. The TTS consumes 
words linked to CAs from the LB, as produced 
by the AM. As described above, each CA has a 
timestamp. The TTS places them on a queue, and 
prepares to synthesise and start sending the audio 
to the speakers. When the system utterance has 
been played, the corresponding semantic con-
cepts for the CA are sent to GALATEA. If the 
TTS is interrupted, the semantic fragments of the 
CA that corresponds to the words that were spo-
ken are sent. This way, GALATEA can monitor 
what the system actually says and provide the 
AM with this information. Since the TTS only 
sends (parts of) the CAs that have actually been 
spoken, these are always marked as committed.  

There is a direct link from the ASR to the TTS 
as well (not shown in Figure 3), informing the 

TTS of start-of-speech and end-of-speech events. 
As soon as a start-of-speech event is detected, 
the TTS stops speaking. If the TTS does not re-
ceive any new CAs from the AM as a conse-
quence of what the user said, it automatically 
resumes from the point of interruption. (This 
implements a "reactive behaviour" in the sense of 
(Brooks, 1991), which is outside of the control of 
the AM.)   

An example of this is shown in Table 1. After 
U.09, the AM decides to repeat the whole num-
ber sequence and sends a series of CAs to the 
TTS for doing this. After S.10, the user gives 
feedback in the form of an acknowledgement 
(U.11). This causes the TTS to make a pause. 
When GALATEA receives the user feedback, it 
uses the time-stamps to find out that the feedback 
is related to the number group in S.10 and the 
grounding status for this group is boosted. When 
the AM receives the updated discourse model, it 
decides that this does not call for any revision to 
the already planned series of actions. Since the 
TTS does not receive any revisions, it resumes 
the repetition of the number sequence in S.12. 

The TTS module is fully incremental in that it 
can stop and resume speaking in the middle of an 
utterance, revise planned output, and can inform 
other components of what (parts of utterances) 
has been spoken. However, the actual text-to-
speech processing is done before the utterance 
starts and not yet incrementally as the utterance 
is spoken, which could further improve the effi-
ciency of the system. This is a topic for future 
research, together with the generation of hidden 
and overt repair as discussed by Kilger & Finkler 
(1995).  

5 Evaluation  

It is difficult to evaluate complete dialogue sys-
tems such as the one presented here, since there 
are so many different components involved (but 
see Möller et al. (2007) for methods used). In our 
case, we’re interested in the benefits of a specific 
aspect, though, namely incrementality. No 
evaluation is needed to confirm that an incre-
mental system such as this allows more flexible 
turn-taking and that it can potentially respond 
faster – this is so by design. However, we also 
want this behaviour to result in an improved user 
experience. To test whether we have achieved 
this, we implemented for comparison a non-
incremental version of the system, very much 
like a standard number dictation dialogue in a 
commercial application. In this version, the user 
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is asked to read out the whole number sequence 
in one go. After a certain amount of silence, the 
system confirms the whole sequence and asks a 
yes/no question whether it was correct. If not, the 
user has to repeat the whole sequence.  

Eight subjects were given the task of using the 
two versions of the system to dictate number 
sequences (in English) to the system. (The sub-
jects were native speakers of German with a 
good command of English.) Half of the subjects 
used the incremental version first and the other 
half started with the non-incremental version. 
They were asked to dictate eight number se-
quences to each version, resulting in 128 dia-
logues. For each sequence, they were given a 
time limit of 1 minute. After each sequence, they 
were asked whether they had succeeded in dictat-
ing the sequence or not, as well as to mark their 
agreement (on a scale from 0-6) with statements 
concerning how well they had been understood 
by the system, how responsive the system was, if 
the system behaved as expected, and how hu-
man-like the conversational partner was. After 
using both versions of the system, they were also 
asked whether they preferred one of the versions 
and to what extent (1 or 2 points, which gives a 
maximum score of 16 to any version, when total-
ling all subjects).  

There was no significant difference between 
the two versions with regard to how many of the 
tasks were completed successfully. However, the 
incremental version was clearly preferred in the 
overall judgement (9 points versus 1). Only one 
of the more specific questions yielded any sig-
nificant difference between the versions: the 
incremental version was judged to be more hu-
man-like for the successful dialogues (5,2 on 
average vs. 4,5; Wilcoxon signed rank test; 
p<0.05).  

The results from the evaluation are in line with 
what could be expected. A non-incremental sys-
tem can be very efficient if the system under-
stands the number sequence the first time, and 
the ASR vocabulary is in this case very limited, 
which explains why the success-rate was the 
same for both systems. However, the incremental 
version was experienced as more pleasant and 
human-like. One explanation for the better rating 
of the incremental version is that the acknowl-
edgements encouraged the subjects to package 
the digits into installments, which helped the 
system to better read back the sequence using the 
same installments. 

6 Conclusions and future work 

To sum up, we have presented a dialogue system 
that through the use of novel techniques (incre-
mental prosodic analysis, reactive connection 
between ASR and TTS, fully incremental archi-
tecture) achieves an unprecedented level of reac-
tiveness (from a minimum latency of 750ms, as 
typically used in dialogue systems, down to one 
of 200ms), and is consequently evaluated as 
more natural than more typical setups by human 
users. While the domain we've used is relatively 
simple, there are no principled reasons why the 
techniques introduced here should not scale up. 

In future user studies, we will explore which 
factors contribute to the improved experience of 
using an incremental system. Such factors may 
include improved responsiveness, better install-
ment packaging, and more elaborate feedback. It 
would also be interesting to find out when rapid 
responses are more important (e.g. acknowl-
edgements), and when they may be less impor-
tant (e.g., answers to task-related questions). 

We are currently investigating the transfer of 
the prosodic analysis to utterances in a larger 
domain, where similarly instructions by the user 
can be given in installments. But even within the 
currently used micro-domain, there are interest-
ing issues still to be explored. In future versions 
of the system, we will let the modules pass paral-
lel hypotheses and also improve the incremental 
generation and synthesis. Since the vocabulary is 
very limited, it would also be possible to use a 
limited domain synthesis (Black & Lenzo, 2000), 
and explore how the nuances of different back-
channels might affect the dialogue. Another chal-
lenge that can be researched within this micro-
domain is how to use the prosodic analysis for 
other tasks, such as distinguishing correction 
from dictation (for example if U.14 in Table 1 
would not begin with a “no”). In general, we 
think that this paper shows that narrowing down 
the domain while shifting the focus to the model-
ling of more low-level, conversational dialogue 
phenomena is a fruitful path. 
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