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Abstract

We investigate the problem of generating
landmark-based manipulation instructions (e.g.
move the blue block so that it touches the red
block on the right) from image pairs showing a
before and an after state in a visual scene. We
present a transformer model with difference
attention heads that learns to attend to target
and landmark objects in consecutive images via
a difference key. Our model outperforms the
state-of-the-art for instruction generation on the
BLOCKS dataset and particularly improves the
accuracy of generated target and landmark ref-
erences. Furthermore, our model outperforms
state-of-the-art models on a difference spotting
dataset.

1 Introduction

When speakers produce instructions for tasks in
visual environments, they often use landmarks and
complex locative expressions to guide listeners to a
goal state. Landmarks are well-known to be highly
beneficial for achieving communicative success in
situated collaborative dialogue tasks like object
search, navigation or manipulation (Dräger and
Koller, 2012; Clarke et al., 2013). Yet, the ac-
curate generation of landmark-based instructions
has been a long-standing challenge in NLG, as
it requires complex visual-spatial and linguistic-
pragmatic reasoning (Kelleher and Kruijff, 2006).
Recent work on generating instructions has mostly
looked at the navigation domain (Fried et al., 2018;
Schumann and Riezler, 2021), whereas work on
instruction following has shown great interest in
manipulation tasks (Bisk et al., 2016; Misra et al.,
2017; Shridhar et al., 2020).

In this paper, we investigate the task of gener-
ating landmark-based manipulations instructions
from image-only input. We use Bisk et al. (2016)’s
BLOCKS dataset as it provides both human-
generated instructions and corresponding images of
a “before state” and an “after state” (see Figure 1).

Figure 1: Image-pairs from BLOCKS (top) and Spot-
the-diff (bottom) with descriptions generated by our
best model. The targets and landmarks are manually
highlighted for better view.

We present a transformer-based generation model
with a simple but novel difference attention head
designed to visually ground complex locative ex-
pressions and target-landmark references in image
pairs. We show that our model clearly exceeds the
performance of Rojowiec et al. (2020)’s existing
baseline models on this task, in greatly improv-
ing the accuracy of generated target and landmark
references. In contrast to other recent instruction
generation models (Fried et al., 2017; Köhn et al.,
2020; Schumann and Riezler, 2021), our approach
does not use any symbolic representations of scene
states and trajectories.

A core challenge for instruction generation in
our set-up is that the model needs to reason about
differences between the “before state” and “after
state” represented as an image pair (see Figure 1).
As a result of this reasoning, the model should be
able to detect the target of the manipulation (e.g.
heineken block) and verbalizing a suitable descrip-
tion of nearby landmarks (e.g. east of the burger
king block). We note that the visual reasoning in-
volved here is similar to the problem of spotting im-
age differences or changes, which is a challenging
computer vision task (Park et al., 2019; Shi et al.,
2020; Oluwasanmi et al., 2019; Gilton et al., 2020).



Figure 2: Our difference attention architecture

Thus, for comparison, we use Park et al. (2019)’s
model as an additional baseline for instruction gen-
eration on BLOCKS. Furthermore, we compare
our transformer model against the state-of-the-art
on the Spot-the-Diff task with real-word images
(Jhamtani and Berg-Kirkpatrick, 2018a).

2 Model

We present a transformer-based model that encodes
pairs of before and after images to generate instruc-
tions that describe a particular manipulation to be
accomplished in a visual scene. To achieve this,
the model needs to learn latent visual-linguistic
representations that enoce information about the
change or manipulation shown in the image pair.
As shown in Figure 2, its main idea is a difference
attention head that computes an attention map for a
visual input state conditioned on the difference to
its preceding state in the input.

Our starting point is a vanilla transformer
model (Vaswani et al., 2017) that implements self-
attention heads, which compute attention maps
over values V given queries Q and keys K rep-
resenting elements of, e.g., a word sequence. A
straightforward way to process image pairs with
these heads is to allocate two of them: one for the
before image embedding v1 and one for the after
image embedding v2.

We propose a difference attention head that ex-
ploits an explicit representation of the difference
between the two embeddings and set this to K as
a supervision signal that is intended to support the
learning of difference-oriented representations. As
there is no before image for v1, we obtain two dif-
ference attention heads for an image pair:

(i) h1 with K = c1 = 0 which attends every-
where equally

(ii) h2 with K = c2 = v2 − v1 which attends on
changes specifically

In line with Park et al. (2019), we scale the output
of the difference attention with a trainable parame-
ter γ and apply a residual connection:

hi = γ · Attention(vi, ci, vi) + vi (1)

This simple modification to the keys of the self
attention heads takes the idea of difference images
from Park et al. (2019) and implements them in a
similar way as cross-modal attention in V&L trans-
formers (Tan and Bansal, 2019; Lu et al., 2019).

We hypothesize that, to fully leverage the power
of difference attention, more heads, i.e. more visual
inputs for a specific change, might be beneficial for
grounding and generating utterances. Thus we in-
crease the number of difference attention heads to
H = 8, where vH is the after image, and we com-
pute “in-between image features” for the additional
heads as vt = v1 + ct

Intuitively, the “in-between images” represent
the trajectory from the before to the after state (see
Figure 2). Formally, we define ct as the weighted
difference features, where the weight is the rela-
tive position in the trajectory between v1 and vH .
Thus, each attention head receives image features
representing a different degree of the visual change
given by vH − v1 and accordingly a varying degree
of difference features for K, where the first head
at i = 1 receives no difference features and the
final head at i = H receives the whole difference
features as given by the following equation:

ci =
i− 1

H − 1
· (vH − v1) where i ∈ [1, H] (2)



Finally, a single-layer feed forward network
maps from the high-dimensional visual image
space 2048× 14× 14 to the reduced visual word
space of 512 dimension ĥi = r(hi) and a down-
stream standard transformer receives the stacked
sequence of visual words that represent various
levels of change as V = [ĥ1; ...; ĥH ].

The number of attention heads H is a hyperpa-
rameter, which corresponds to the granularity of
the simulated visual trajectory {v1, ..., vt, ..., vH}
where later images contain more changes from the
before image v1. We report results for 2 and 8
heads, leaving further experimentation for future
work. As baselines, we implement two standard
transformers that self-attend to the image pair (TF-
self-att-2) and to the in-between images (TF-self-
att-8). These are compared to TF-diff-att-2 and
TF-diff-att-8 correspondingly, the transformers
with difference attention.1

We encode the before and after images with
a pre-trained ResNet-101 (He et al., 2016) and,
optionally, transform it into a sequence with in-
between images. This trajectory is passed through
a difference attention layer, to obtain a sequence of
visual words (see Figure 2). We apply positional
encoding to the visual words, as in the standard
transformer. These are further processed within
the 6 layers of the multi-head-attention-based trans-
former encoder. In the decoder, an embedding layer
first maps the words to vectors and then applies
masked-self-attention followed by encoder-decoder
attention which relates the visual words to words in
the output sequence. In this architecture, difference
and self-attention are used consecutively one after
the other. In future work, further combinations can
be investigated.

3 Experiments

3.1 Data
BLOCKS (Bisk et al., 2016) is a dataset of move-
ment instructions for blocks on a simple virtual 3D
board (see Figure 1). The image pairs have been
generated by down-sizing MNIST images, decorat-
ing the resulting blocks with digits or brand logos
and randomly move the block’s pixels to other po-
sitions, one at a time. This sequence in reverse
order corresponds to an action sequence for as-
sembling a block configuration that visually rep-
resents a number. While BLOCKS was originally
designed for instruction following, Rojowiec et al.

1Code https://github.com/clp-research/diff-att-transformer

(2020) analyze its use for instruction giving. We
use the MNIST-logo subset with constellations of
up to 20 cubes with distinct logos. It is split into
667/95/181 image pairs for training, validation
and testing and 6003/855/1629 captions respec-
tively (9 per image pair).

Spot-the-Diff (Jhamtani and Berg-Kirkpatrick,
2018b) provides pairs of similar images extracted
from real-word surveillance videos. The image pair
shows a scene from the same viewpoint in differ-
ent, but similar states (according to L2 distance)
resulting in very subtle differences that are diffi-
cult to spot. Thus, Jhamtani and Berg-Kirkpatrick
(2018b) collected descriptions of these pairs via
crowdsourcing and instructed workers to “care-
fully study the image”, “give sufficient time as
some difference may not be obvious" and to pro-
vide complete English sentences for each differ-
ence. We use the entire dataset of 9524/1634/1404
image-pairs for training, validation and testing and
17676/3310/2107 captions respectively. When an
image-pair has less than 3 captions, we re-sample
from the given ones, so that during training each
pair is seen 3 times per epoch.

3.2 Training and Hyperparameters

We encode the before and after image separately
using a pre-trained ResNet-101 with the last layer
cut off which results in image embeddings of size
2048× 14× 14 by applying average pooling. The
word embedding layer in the transformer decoder
is trained from scratch with a size of d = 512.
We use the Adam optimizer with a learning rate of
10−4 and a batch size of 8/16 for training with 8/2
heads respectively. We also perform early stopping
after 5 epochs without improvement on the valida-
tion set and apply Label Smoothing as proposed by
Vaswani et al. (2017).

For BLOCKS, it turned out to be necessary to
fine-tune the image encoder to recognize the small
logos distinguishing the single blocks. The training
regime on BLOCKS is a two-stage process: the
models (DUDA and our transformer models) are
first trained with a freezed, pre-trained image en-
coder, and then trained fully together to fine-tune
the image encoder for this particular task. For Spot-
the-diff, we do not fine-tune the image encoder to
ensure comparability with previous work.



3.3 Evaluation

As the instructions in BLOCKS require detailed
descriptions of block configurations, they com-
monly contain references to target and landmark ob-
jects, e.g. heineken block right of the Burger King
block in Figure 1. If an instruction in BLOCKS
does not mention the single correct target, a poten-
tial follower will not be able to execute it in any
way. For landmarks, there might be several blocks
mentioned by different crowd-workers. Since the
blocks are generally referred to their logos, the tar-
gets in BLOCKS can be detected in human and gen-
erated captions with a simple, rule-based instruc-
tion parser (Rojowiec et al., 2020). In Spot-the-diff,
there might be several target objects referred to by
a more complex vocabulary, e.g. additional peo-
ple in Figure 1. The dataset does not provide a
language-external annotation for ground-truth tar-
get objects and they cannot be easily detected in an
automatic way.

We measure the overlap of generated and hu-
man captions with BLEU-4, METEOR, CIDEr and
SPICE, using the API of Chen et al. (2015). Fur-
thermore, for BLOCKS, we rely on Rojowiec et al.
(2020)’s parser which detects expressions (phrases)
referring to targets and landmarks in ground-truth
and generated instructions. Following Rojowiec
et al., we compute these word or phrase accuracies:
(i) target: correctly generated targets, given all
generated target phrases (ii) landmark: correctly
generated landmarks, mentioning one of the land-
marks logos from the set of landmarks found in
the ground-truth instructions (iii) spatial: correctly
generated words not contained in target and land-
mark phrases, as a simple metric for measuring
overlap of spatial expressions.

4 Results

Qualitative samples of generation outputs are
shown in Figure 1 and in the Appendix.

4.1 General performance

Table 1 shows the results for instruction genera-
tion on BLOCKS: the TF-diff-att-8 transformer
achieves the best performance on all metrics. It
outperforms the baseline transformers with self at-
tention (TF-self-att-2/8) by a considerable margin.
It also clearly improves two state-of-the-art base-
lines for instruction generation and change caption-
ing. We note that our version of DUDA trained on
BLOCKS improves considerably over the results

Model B M C Target Landm Spatial

LSTM+Att* 0.38 0.28 0.27 0.11 0.28 -
DUDA 0.53 0.37 0.96 0.59 0.42 0.66

TF-self-att-2 0.34 0.28 0.35 0.19 0.26 0.76
TF-self-att-8 0.44 0.32 0.66 0.37 0.45 0.72
TF-diff-att-2 0.55 0.38 1.06 0.73 0.40 0.80
TF-diff-att-8 0.68 0.43 1.52 0.86 0.73 0.83

Table 1: BLOCKS results: B(LEU-4), M(eteor), C(ider)
and word accuracies (see Section 3.3), LSTM+Att* as
reported in Rojowiec et al. (2020).

Model B M C S

DUDA* 0.081 0.115 0.34 -
FCC* 0.099 0.129 0.368 -
SDCM* 0.098 0.127 0.363 -
DDLA* 0.085 0.12 0.328 -
M-VAM + RAF* 0.111 0.129 0.425 0.171

TF-self-att-2 0.109 0.135 0.777 0.197
TF-self-att-8 0.110 0.136 0.786 0.191
TF-diff-att-2 0.117 0.137 0.843 0.205
TF-diff-att-8 0.113 0.136 0.842 0.202

Table 2: Spot-the-diff results: B(LEU-4), M(eteor),
C(IDEr), S(PICE). *Models as reported in Shi et al.
(2020)

by Rojowiec et al. (2020), but not over our TF-diff
models.

Results on Spot-the-diff are shown in Table 2.
Generally, existing systems (mostly developed in
the CV community) still obtain relatively low over-
lap scores on this task (with, e.g., BLEU scores
around or below 0.1). Here, again, the difference at-
tention transformers, TF-diff-att-2 and TF-diff-att-
8, outperform the vanilla self-attention transform-
ers. They also improve over the state-of-the-art set
by the M-VAM model on Spot-the-diff, with a par-
ticularly strong increase of the CIDEr score (0.425
and 0.843 respectively). In contrast to BLOCKS,
we see a small advantage of the TF-diff-att-2 over
TF-diff-att-8. We will discuss this effect in detail
in the following Section.

4.2 In-between images and landmarks
Results in Table 1 indicate that the accurate gener-
ation of landmark references is a harder task than
spotting and referring to target objects. The com-
petitive DUDA model achieves 59% acc. on targets
and only 42% acc. on landmarks – an effect which
has not been reported in the original DUDA paper
by Park et al. (2019). This pattern is expected as
the region of the target object is more or less ex-



plicitly represented in the difference image. The
landmarks objects, on the other hand, do not move
from the before to the after state and the model has
to learn to attend to objects nearby the difference
regions.

We observe that in-between images give a very
clear performance boost for the realization of land-
mark references. Thus, the TF-diff-att-8 model
improves the landmark accuracy of TF-diff-att-2
and DUDA by more than 30%, cf. Table 1. From
this, we conclude that the in-between images com-
bined with difference attention heads allow the
transformer model to not only attend to target ob-
jects but also to “close-by” landmark objects, i.e.
relating the before to the after image.

On Spot-the-diff, we do not find a clear positive
effect of the in-between images, cf. Table 2. How-
ever, as discussed in Section 4.1, the differences be-
tween models on Spot-the-diff are generally much
smaller than on BLOCKS, which likely results
from the different nature of the two tasks: the main
challenge in Spot-the-diff is to detect and accu-
rately describe extremely small objects, that can be
difficult to spot even for humans. At the same time,
qualitative inspections of the actual descriptions in
Spot-the-diff reveals that they contain much less
complex spatial expressions or landmarks. Thus,
our results on Spot-the-diff complement rather than
contradict results on BLOCKS, and indicate that
difference attention with in-between images is par-
ticularly helpful for grounding and generating lin-
guistically complex landmark expressions.

4.3 Discussion

Our results are in line with other approaches show-
ing the effectiveness of customized transformer ar-
chitectures for complex linguistic-visual reasoning
(Herdade et al., 2019; Cornia et al., 2020). Our dif-
ference attention is tailored to the landmark-based
generation task, but generalizes to images from
virtual (BLOCKS) and real environments (Spot-
the-Diff), and is substantially simpler than, e.g.,
vision models for difference spotting (Shi et al.,
2020). Approaches for video captioning (Zhou
et al., 2018; Sun et al., 2019) predict key frames
to describe things happening in a video with many
frames. Our approach is complementary as we aug-
ment an image pair with only two frames to obtain
in-between frames that are useful for grounding
locative expressions and landmarks.

We took inspiration from the DUDA model (Park

et al., 2019) which dynamically attends to before,
after and difference images during sequence gen-
eration. We carry this idea over to the transformer
architecture which attends to all inputs simultane-
ously, by adding a difference-attention layer that
allows the input of fine-granular visual changes be-
tween two images at once. Our results show that
this approach performs better than dual attention
or self-attention alone.

We observe that the different evaluation metrics
yield roughly consistent model comparisons, i.e.
models with lower overlap scores tend to achieve
lower reference-related accuracies. It is worth not-
ing though that the BLEU/Meteor score indicates
smaller differences between certain models than the
target accuracy: DUDA and TF-diff-att-2 seem to
perform almost on par in terms BLEU and Meteor
(see Table 1), but the target accuracy indicates that
TF-diff-att-2 references are much more accurate.
This underlines the fact that n-gram overlap scores
in this NLG domain do not constitute a fully sat-
isfactory approximation of instruction quality. An
important direction for future work is to design in-
teractive human evaluation settings for these tasks
as standard off-line ratings might not be appropriate
here (see examples in Appendix for illustration).

5 Conclusion

We investigate language generation for landmark-
based instructions, and difference spotting. We pro-
posed a simple difference attention head that relates
consecutive images in an input trajectory via a dif-
ference key. Our method sets a new state-of-the-art
on BLOCKS (Bisk et al., 2016) and Spot-the-diff
(Jhamtani and Berg-Kirkpatrick, 2018b). Our find-
ings are in line with Park et al., in that attention
mechanisms based on image differences are highly
effective for learning to reason for language gener-
ation from image pairs. We show that generating
instructions with accurate landmark expressions is
a challenging task for models at the intersection
of Language & Vision, which can be tackled with
customized attention mechanisms.
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A Appendix

A.1 Attention maps
Figure 3 shows an attention map for the TF-diff-
att-8 model on BLOCKS. The map suggests that
the model was able to precisely locate target and
landmark objects. Figure 4 shows an example of a
very accurate attention map computed by the TF-
diff-att-2 model on Spot-the-diff.
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A.2 Qualitative results
We present six generated example outputs drawn from the testset. We show one of the references along
with the text generated by the TF-diff-att-8 model. Additionally, the visual input is presented as the
before image on the left, the after image on the right and an in-between image in the middle (t = 4).

Example 1

Reference place the coca cola box so that it’s lower right corner touches the upper left corner of
the heineken box

TF-diff-att-8 move the coca cola block diagonally above and to the left of the heineken block.

Example 2
Reference shell moves two spaces left and 3/4 space down from heineken.
TF-diff-att-8 place the shell block south of the pepsi block.

Example 3 (wrong landmark)
Reference place adidas so it’s right side completely touches coca-cola.
TF-diff-att-8 put the adidas block in the first open space to the left of the mercedes block.



Example 4

Reference esso is placed so that its upper right corner is touching the lower left corner of nvidia
TF-diff-att-8 move esso so it is below and to the left of nvidia

Example 5 (wrong)
Reference place the esso block in the same column as the coca cola block, one and a half block

spaces above the coca cola block.
TF-diff-att-8 place the shell block north of the stella artois block.

Example 6 (wrong landmark)
Reference stella artois is placed directly to the left of texaco
TF-diff-att-8 move the stella artois block to the left of the target block.


